Brent Parker, Environmental Analyst
Entergy Arkansas, LLC - Union Power Station
6497 Calion Highway
El Dorado, AR 71730

Dear Mr. Parker:

The enclosed Permit No. 1861-AOP-R10 is your authority to construct, operate, and maintain the equipment and/or control apparatus as set forth in your application initially received on 5/9/2019.

After considering the facts and requirements of A.C.A. §8-4-101 et seq. as referenced by §8-4-304, and implementing regulations, I have determined that Permit No. 1861-AOP-R10 for the construction and operation of equipment at Entergy Arkansas, LLC - Union Power Station shall be issued and effective on the date specified in the permit, unless a Commission review has been properly requested under Arkansas Pollution Control & Ecology Commission’s (Commission) Administrative Procedures, Regulation No. 8, within thirty (30) days after service of this decision.

The applicant or permittee and any other person submitting public comments on the record may request an adjudicatory hearing and Commission review of the final permitting decisions as provided under Chapter Six of Regulation No. 8. Such a request shall be in the form and manner required by Regulation 8.603, including filing a written Request for Hearing with the Commission secretary at 101 E. Capitol Ave., Suite 205, Little Rock, Arkansas 72201. If you have any questions about filing the request, please call the Commission at 501-682-7890.

Sincerely,

[Signature]

Stuart Spencer
Associate Director, Office of Air Quality

Enclosure: Final Permit
ADEQ
OPERATING
AIR PERMIT

Pursuant to the Regulations of the Arkansas Operating Air Permit Program, Regulation 26:

Permit No. : 1861-AOP-R10

IS ISSUED TO:

Entergy Arkansas, LLC - Union Power Station
6497 Calion Highway
El Dorado, AR 71730
Union County
AFIN: 70-00543

THIS PERMIT AUTHORIZES THE ABOVE REFERENCED PERMITTEE TO INSTALL, OPERATE, AND MAINTAIN THE EQUIPMENT AND EMISSION UNITS DESCRIBED IN THE PERMIT APPLICATION AND ON THE FOLLOWING PAGES. THIS PERMIT IS VALID BETWEEN:

May 2, 2017 AND May 1, 2022

THE PERMITTEE IS SUBJECT TO ALL LIMITS AND CONDITIONS CONTAINED HEREIN.

Signed:

Stuart Spencer
Associate Director, Office of Air Quality

SEP 27 2019

Date
Entergy Arkansas, LLC - Union Power Station
Permit #: 1861-AOP-R10
AFIN: 70-00543

Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>FACILITY INFORMATION</td>
<td>4</td>
</tr>
<tr>
<td>II</td>
<td>INTRODUCTION</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Summary of Permit Activity</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Process Description</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Regulations</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>Emission Summary</td>
<td>7</td>
</tr>
<tr>
<td>III</td>
<td>PERMIT HISTORY</td>
<td>12</td>
</tr>
<tr>
<td>IV</td>
<td>SPECIFIC CONDITIONS</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>SN-01 through SN-08 Eight (8) Combustion Turbine/Heat Recovery Steam Generators with Duct Burner</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>SN-11 through SN-14 Cooling Towers</td>
<td>26</td>
</tr>
<tr>
<td></td>
<td>SN-15 Emergency Fire Pump Engine</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td>SN-16 Plant Telecom Emergency Generator</td>
<td>32</td>
</tr>
<tr>
<td></td>
<td>SN-19 Gasoline Storage Tank</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td>SN-20 Substation Telecom Emergency Generator</td>
<td>38</td>
</tr>
<tr>
<td>V</td>
<td>COMPLIANCE PLAN AND SCHEDULE</td>
<td>41</td>
</tr>
<tr>
<td>VI</td>
<td>PLANTWIDE CONDITIONS</td>
<td>42</td>
</tr>
<tr>
<td></td>
<td>Acid Rain (Title IV)</td>
<td>42</td>
</tr>
<tr>
<td></td>
<td>Title VI Provisions</td>
<td>43</td>
</tr>
<tr>
<td></td>
<td>Transport Rule (TR) NO\textsubscript{X} Ozone Season Group 2 Trading Program Requirements</td>
<td>44</td>
</tr>
<tr>
<td>VII</td>
<td>INSIGNIFICANT ACTIVITIES</td>
<td>50</td>
</tr>
<tr>
<td>VIII</td>
<td>GENERAL PROVISIONS</td>
<td>51</td>
</tr>
</tbody>
</table>

Appendix A – NSPS Subpart Da - Standards of Performance for Industrial-Commercial-Institutional Steam Generating Units
Appendix B – NSPS Subpart GG - Standards of Performance for Stationary Combustion Turbines
Appendix C – ADEQ CEM Systems Conditions
Appendix D – Cross State Air Pollution Rule (CSAPR) Application
Appendix E – NESHAP Subpart ZZZZ – Standards for Hazardous Air Pollutants for Stationary Reciprocating Internal Combustion Engines
Appendix F – NSPS Subpart JJJJ – Standards of Performance for Stationary Spark Ignition Internal Combustion Engines
Appendix G – NESHAP Subpart CCCCC – Standards for Hazardous Air Pollutants for Source Category: Gasoline Dispensing Facilities
Appendix H – Acid Rain permit application forms
List of Acronyms and Abbreviations

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>AFIN</td>
<td>ADEQ Facility Identification Number</td>
</tr>
<tr>
<td>C.F.R.</td>
<td>Code of Federal Regulations</td>
</tr>
<tr>
<td>CO</td>
<td>Carbon Monoxide</td>
</tr>
<tr>
<td>HAP</td>
<td>Hazardous Air Pollutant</td>
</tr>
<tr>
<td>lb/hr</td>
<td>Pound Per Hour</td>
</tr>
<tr>
<td>MVAC</td>
<td>Motor Vehicle Air Conditioner</td>
</tr>
<tr>
<td>No.</td>
<td>Number</td>
</tr>
<tr>
<td>NOx</td>
<td>Nitrogen Oxide</td>
</tr>
<tr>
<td>PM</td>
<td>Particulate Matter</td>
</tr>
<tr>
<td>PM10</td>
<td>Particulate Matter Smaller Than Ten Microns</td>
</tr>
<tr>
<td>SNAP</td>
<td>Significant New Alternatives Program (SNAP)</td>
</tr>
<tr>
<td>SO2</td>
<td>Sulfur Dioxide</td>
</tr>
<tr>
<td>SSM</td>
<td>Startup, Shutdown, and Malfunction Plan</td>
</tr>
<tr>
<td>Tpy</td>
<td>Tons Per Year</td>
</tr>
<tr>
<td>UTM</td>
<td>Universal Transverse Mercator</td>
</tr>
<tr>
<td>VOC</td>
<td>Volatile Organic Compound</td>
</tr>
</tbody>
</table>
SECTION I: FACILITY INFORMATION

PERMITTEE: Entergy Arkansas, LLC - Union Power Station

AFIN: 70-00543

PERMIT NUMBER: 1861-AOP-R10

FACILITY ADDRESS: 6497 Calion Highway
El Dorado, AR 71730

MAILING ADDRESS: 6497 Calion Highway
El Dorado, AR 71730

COUNTY: Union County

CONTACT NAME: Brent Parker

CONTACT POSITION: Environmental Analyst

TELEPHONE NUMBER: (870) 748-2007

REVIEWSING ENGINEER: Elliott Marshall

UTM North South (Y): Zone 15: 3684915.66 m

UTM East West (X): Zone 15: 538363.58 m
SECTION II: INTRODUCTION

Summary of Permit Activity

Union Power Station (UPS) is operated by Entergy Arkansas, LLC. The facility is a natural gas-fired combined-cycle power generation facility in southern Arkansas approximately 11 kilometers (km) northeast of El Dorado and 6 km southwest of Calion. The site is approximately 33 km north of the Arkansas/Louisiana border in Union County. This is a permit modification to:

1. Replace the existing Substation Telecom Emergency Generator (SN-18) with a new, 64.1 hp, propane-powered Substation Telecom Emergency Generator (SN-20).
2. Revise Specific Conditions #37 and #39 to increase the startup/shutdown (SUSD) emissions averaging period for CO and NOx from a 1-hour block period to a 3-hour rolling average period. A SUSD 3-hour averaging period is consistent with other Department permitted combustion turbines.

Permitted emission rates are increasing by 0.3 tpy VOC and 13.3 tpy CO.

Process Description

Entergy Arkansas, Inc. owns and operates a 2,200 megawatt (MW) natural gas-fired combined-cycle electric power plant located at 6434 Calion Highway, El Dorado, Union County, Arkansas. This facility consists of four 2:1 combined cycle power blocks, each comprised of two GE 7FA stationary gas turbines with heat recovery steam generators and supplemental duct firing along with a single common steam turbine. Ancillary air sources located at the site include cooling towers, emergency stationary reciprocating internal combustion engines, and gasoline storage tank.

Combustion Turbine (CT) Units (SN-01 through SN-08):

The facility operates eight GE model 7FA 170MW (nominal) low-NOx combined-cycle combustion turbines (CTs) (SN-01 through SN-08). Each CT is rated for a nominal maximum heat input capacity of 1,946 MMBtu/hr. Each CT is equipped with duct burners for supplemental gas firing. The duct burner for each unit is rated for nominal maximum heat input capacity of 285 MMBtu/hr. With duct burning firing, each CT/duct burner combination is capable of a total nominal heat input capacity of approximately 2,231 MMBtu/hr using solely pipeline-quality natural gas.

Waste heat from each CT, along with supplemental heat input from the duct burners, is utilized to generate steam to power a Heat Recovery Steam Generator (HRSG). Steam from each unit’s HRSG is utilized to power a common steam turbine (ST) at each of the four power blocks. Each pair of two CTs, combined with the ST, form a 2:1 combined cycle power block. NOx emissions from each CT/duct burner combination are controlled by a selective catalytic reduction (SCR) system.

Cooling towers (SN-11 through SN-14):
The facility operates four 9-cell forced-convection cooling towers (SN-11 through SN-14) to provide cooling for condensing the exhaust steam from each steam turbine. Each cooling tower is equipped with drift eliminators to control particulate emissions.

Emergency Fire Pump (SN-15) and Emergency Generators (SN-16 and 20):

The facility operates one diesel-fired emergency fire pump engine (SN-15) rated at 240 hp. The facility also operates two propane-fired emergency engines used to power electrical generators to provide back-up power to telecommunications systems. These engines are rated at 40 hp (SN-16) and 64.1 hp (SN-20).

Gasoline Storage Tank (SN-19)

The facility operates one 500 gallon gasoline storage tank.
Regulations

The following table contains the regulations applicable to this permit.

<table>
<thead>
<tr>
<th>Regulations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arkansas Air Pollution Control Code, Regulation 18, effective March 14, 2016</td>
</tr>
<tr>
<td>Regulations of the Arkansas Plan of Implementation for Air Pollution Control, Regulation 19, effective March 14, 2016</td>
</tr>
<tr>
<td>Regulations of the Arkansas Operating Air Permit Program, Regulation 26, effective March 14, 2016</td>
</tr>
<tr>
<td>40 CFR 52.21, Prevention of Significant Deterioration (PSD)</td>
</tr>
<tr>
<td>NSPS Subpart Da - Standards of Performance for Electric Utility Steam Generating Units</td>
</tr>
<tr>
<td>NSPS Subpart GG - Standards of Performance for Stationary Combustion Turbines</td>
</tr>
<tr>
<td>40 CFR Part 75 - Continuous Emission Monitoring</td>
</tr>
<tr>
<td>40 CFR Part 97 – Cross-State Air Pollution Rule (CSAPR)</td>
</tr>
<tr>
<td>40 CFR Part 60 Subpart JJJJ – Standards of Performance for Stationary Spark Ignition Internal Combustion Engines</td>
</tr>
</tbody>
</table>

Emission Summary

The following table is a summary of emissions from the facility. This table, in itself, is not an enforceable condition of the permit.

<table>
<thead>
<tr>
<th>EMISSION SUMMARY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source Number</td>
</tr>
<tr>
<td>Number</td>
</tr>
<tr>
<td>Total Allowable Emissions</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
EMISSION SUMMARY

<table>
<thead>
<tr>
<th>Source Number</th>
<th>Description</th>
<th>Pollutant</th>
<th>Emission Rates</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>lb/hr</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NO\textsubscript{X}</td>
<td>279.8</td>
</tr>
<tr>
<td></td>
<td>HAPs</td>
<td>Total HAP</td>
<td>6.22</td>
</tr>
<tr>
<td></td>
<td>Air Contaminants **</td>
<td>H\textsubscript{2}SO\textsubscript{4}**</td>
<td>2.80</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ammonia**</td>
<td>245.60</td>
</tr>
<tr>
<td>01</td>
<td>GE Frame7 CT/HRSG w DB Unit 1A</td>
<td>PM</td>
<td>21.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PM\textsubscript{10}</td>
<td>21.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SO\textsubscript{2}</td>
<td>3.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>VOC</td>
<td>6.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CO</td>
<td>47.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NO\textsubscript{X}</td>
<td>33.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>H\textsubscript{2}SO\textsubscript{4}**</td>
<td>0.35</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ammonia**</td>
<td>30.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total HAP</td>
<td>0.72</td>
</tr>
<tr>
<td>02</td>
<td>GE Frame7 CT/HRSG w DB Unit 1B</td>
<td>PM</td>
<td>21.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PM\textsubscript{10}</td>
<td>21.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SO\textsubscript{2}</td>
<td>3.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>VOC</td>
<td>6.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CO</td>
<td>47.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NO\textsubscript{X}</td>
<td>33.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>H\textsubscript{2}SO\textsubscript{4}**</td>
<td>0.35</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ammonia**</td>
<td>30.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total HAP</td>
<td>0.72</td>
</tr>
<tr>
<td>03</td>
<td>GE Frame7 CT/HRSG w DB Unit 2A</td>
<td>PM</td>
<td>21.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PM\textsubscript{10}</td>
<td>21.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SO\textsubscript{2}</td>
<td>3.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>VOC</td>
<td>6.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CO</td>
<td>47.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NO\textsubscript{X}</td>
<td>33.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>H\textsubscript{2}SO\textsubscript{4}**</td>
<td>0.35</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ammonia**</td>
<td>30.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total HAP</td>
<td>0.72</td>
</tr>
</tbody>
</table>
EMISSION SUMMARY

<table>
<thead>
<tr>
<th>Source Number</th>
<th>Description</th>
<th>Pollutant</th>
<th>Emission Rates</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>lb/hr</td>
</tr>
<tr>
<td>04</td>
<td>GE Frame7 CT/HRSG w DB Unit 2B</td>
<td>PM</td>
<td>21.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PM<sub>10</sub></td>
<td>21.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SO<sub>2</sub></td>
<td>3.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>VOC</td>
<td>6.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CO</td>
<td>47.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NO<sub>x</sub></td>
<td>33.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>H<sub>2</sub>SO<sub>4</sub>**</td>
<td>0.35</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ammonia**</td>
<td>30.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total HAP</td>
<td>0.72</td>
</tr>
<tr>
<td>05</td>
<td>GE Frame7 CT/HRSG w DB Unit 3A</td>
<td>PM</td>
<td>21.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PM<sub>10</sub></td>
<td>21.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SO<sub>2</sub></td>
<td>3.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>VOC</td>
<td>6.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CO</td>
<td>47.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NO<sub>x</sub></td>
<td>33.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>H<sub>2</sub>SO<sub>4</sub>**</td>
<td>0.35</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ammonia**</td>
<td>30.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total HAP</td>
<td>0.72</td>
</tr>
<tr>
<td>06</td>
<td>GE Frame7 CT/HRSG w DB Unit 3B</td>
<td>PM</td>
<td>21.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PM<sub>10</sub></td>
<td>21.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SO<sub>2</sub></td>
<td>3.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>VOC</td>
<td>6.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CO</td>
<td>47.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NO<sub>x</sub></td>
<td>33.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>H<sub>2</sub>SO<sub>4</sub>**</td>
<td>0.35</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ammonia**</td>
<td>30.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total HAP</td>
<td>0.72</td>
</tr>
<tr>
<td>07</td>
<td>GE Frame7 CT/HRSG w DB Unit 4A</td>
<td>PM</td>
<td>21.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PM<sub>10</sub></td>
<td>21.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SO<sub>2</sub></td>
<td>3.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>VOC</td>
<td>6.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CO</td>
<td>47.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NO<sub>x</sub></td>
<td>33.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>H<sub>2</sub>SO<sub>4</sub>**</td>
<td>0.35</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ammonia**</td>
<td>30.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total HAP</td>
<td>0.72</td>
</tr>
<tr>
<td>Source Number</td>
<td>Description</td>
<td>Pollutant</td>
<td>Emission Rates</td>
</tr>
<tr>
<td>---------------</td>
<td>-------------</td>
<td>-----------</td>
<td>----------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>lb/hr</td>
</tr>
<tr>
<td>08</td>
<td>GE Frame7 CT/HRSG w DB Unit 4B</td>
<td>PM</td>
<td>21.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PM<sub>10</sub></td>
<td>21.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SO<sub>2</sub></td>
<td>3.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>VOC</td>
<td>6.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CO</td>
<td>47.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NO<sub>x</sub></td>
<td>33.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>H<sub>2</sub>SO<sub>4</sub>**</td>
<td>0.35</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ammonia**</td>
<td>30.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total HAP</td>
<td>0.72</td>
</tr>
<tr>
<td>11</td>
<td>Mechanical Draft Cooling Tower (Power Block No.1) C1 thru C9</td>
<td>PM</td>
<td>1.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PM<sub>10</sub></td>
<td>0.7</td>
</tr>
<tr>
<td>12</td>
<td>Mechanical Draft Cooling Tower (Power Block No.2) C10 thru C18</td>
<td>PM</td>
<td>1.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PM<sub>10</sub></td>
<td>0.7</td>
</tr>
<tr>
<td>13</td>
<td>Mechanical Draft Cooling Tower (Power Block No.3) C19 thru C27</td>
<td>PM</td>
<td>1.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PM<sub>10</sub></td>
<td>0.7</td>
</tr>
<tr>
<td>14</td>
<td>Mechanical Draft Cooling Tower (Power Block No.4) C28 thru C36</td>
<td>PM</td>
<td>1.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PM<sub>10</sub></td>
<td>0.7</td>
</tr>
<tr>
<td>15</td>
<td>Emergency Fire Pump Engine</td>
<td>PM</td>
<td>0.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PM<sub>10</sub></td>
<td>0.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SO<sub>2</sub></td>
<td>0.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>VOC</td>
<td>0.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CO</td>
<td>1.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NO<sub>x</sub></td>
<td>7.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total HAP</td>
<td>0.01</td>
</tr>
<tr>
<td>16</td>
<td>Emergency Generator</td>
<td>PM</td>
<td>0.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PM<sub>10</sub></td>
<td>0.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SO<sub>2</sub></td>
<td>0.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>VOC</td>
<td>0.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CO</td>
<td>34.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NO<sub>x</sub></td>
<td>0.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total HAP</td>
<td>0.03</td>
</tr>
<tr>
<td>18</td>
<td>Removed with issuance of this permit.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
EMISSION SUMMARY

<table>
<thead>
<tr>
<th>Source Number</th>
<th>Description</th>
<th>Pollutant</th>
<th>Emission Rates</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>lb/hr</td>
</tr>
<tr>
<td>19</td>
<td>Gasoline Storage Tank</td>
<td>VOC</td>
<td>6.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total HAP</td>
<td>0.38</td>
</tr>
<tr>
<td>20</td>
<td>Substation Telecom Emergency Generator</td>
<td>PM</td>
<td>0.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PM$_{10}$</td>
<td>0.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SO$_{2}$</td>
<td>0.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>VOC</td>
<td>1.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CO</td>
<td>54.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NO$_{X}$</td>
<td>1.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total HAP</td>
<td>0.04</td>
</tr>
</tbody>
</table>

Air Contaminants such as ammonia, acetone, and certain halogenated solvents are not VOCs or HAPs.
SECTION III: PERMIT HISTORY

Permit #1861-AOP-R0 was issued on August 24, 2000. This was the first air permit issued to the facility. The facility was permitted to construct and operate either of the following two of operating scenarios:

Scenario 1 included ten ABB Combustion Turbines (CTs) and ten Heat Recovery Steam Generating Units (HRSGs) without duct burners.

Scenario 2 included ten GE CT/HRSGs and five HRSGs with duct burners.

The facility was capable of producing either 2,600 or 2,500 megawatts (MW) of electricity under scenarios 1 and 2 respectively, depending on the operating scenario.

A BACT analysis was performed for each regulated pollutant emitted in amounts that exceed the PSD significant levels. BACT applies to each emissions unit at which significant net emissions in the pollutant would occur as a result of the method of operation of the unit. Therefore, the BACT analysis for UPS considers emission controls for PM/PM$_{10}$, SO$_2$, VOC, CO, NO$_X$, and H$_2$SO$_4$.

<table>
<thead>
<tr>
<th>SN</th>
<th>Pollutant</th>
<th>BACT Determination</th>
</tr>
</thead>
<tbody>
<tr>
<td>01 thru 08</td>
<td>PM$_{10}$</td>
<td>good combustion practices and the use of clean fuels</td>
</tr>
<tr>
<td></td>
<td>SO$_2$</td>
<td>use of low sulfur fuel</td>
</tr>
<tr>
<td></td>
<td>VOC</td>
<td>combustor design and good operating practices</td>
</tr>
<tr>
<td></td>
<td>CO</td>
<td>combustor design and good operating practices</td>
</tr>
<tr>
<td></td>
<td>NO$_X$</td>
<td>SCR</td>
</tr>
<tr>
<td></td>
<td>H$_2$SO$_4$</td>
<td>use of low sulfur fuel</td>
</tr>
</tbody>
</table>

*At 15% oxygen

Permit 1861-AOP-R1 was issued on September 5, 2001. Modification in this permit included: Reduction from 10 to 8 GE 7FA combustion turbines (CTs) with duct burners (DBs). Increased in the size of the 8 DBs from 200 million British thermal units per hour (MMBtu/hr) (based on a higher heating value, HHV) to 285 MMBtu/hr HHV. Removal of the ABB CT scenario.
Entergy Arkansas, LLC - Union Power Station
Permit #: 1861-AOP-R10
AFIN: 70-00543

PM emission limit was increased to accommodate compliance testing using method 5 in conjunction with method 202. The nominal generating capacity was decreased from 2,600 to 2,200 MW of electricity.

Permit 1861-AOP-R2 Renewal #1 was issued on September 7, 2005. The renewal quantified particulate emissions from the existing cooling towers, revised the ammonia emission rates, and updated the formaldehyde emission rates using the latest stack testing data. Five years testing cycle requirements for the eight CT/HRSGs were also incorporated in the permit.

Permit #1861-AOP-R3 was issued on June 25, 2007. The minor modification allowed for semi-annual combustion turbine tuning (adjustment of fuel to air ratios) of the eight natural gas-fired combined-cycle combustion turbines (CTs). Each CT is part of a combined-cycle power generating unit, designated as SN-01 through SN-08. Periodic tuning of the CTs is conducive to maintaining low emissions and efficient performance. During CT tuning events, which takes place within a consecutive 24-hour period, NOx emissions are above the current 24-hour averaging (lb/hr) permit limit. However, during normal operation, this permit modification did not affect the NOx emission rates. Specific Condition #38 was added to include combustion turbine tuning. Compliance with the 30 day BACT limit in Specific Condition #21 was met because the CTs were operated at lower NOx levels during the remaining hours of operation.

Permit #1861-AOP-R4 was issued on April 21, 2009. This modification was to incorporate Clean Air Interstate Rule (CAIR) requirements set forth in Regulation 19, Chapter 14. Permitted emissions remained unchanged.

Permit #1861-AOP-R5 was issued on June 26, 2012. This modification was to renew the facility’s existing permit. The source descriptions for the eight (8) combustion turbines (CTs) were revised to provide consistency in reporting and recordkeeping databases. Also, the pollutant list was updated to show the latest pollutants presented in AP-42 (Table 3.1-3) for stationary combustion turbines burning natural gas. Therefore, total HAP emissions increased by 8.24 tons/year (tpy).

Startup/Shutdown (SUSD) conditions were included in this permit to establish SUSD emission limits for the eight combustion turbines (SN-01 through SN-08) and required reporting of all emissions in excess of permitted limits.

Permit #1861-AOP-R6 was issued on April 2, 2013. This modification was to add the existing 240-hp diesel fired fire pump engine as a source (SN-15) and incorporate the provisions of 40 CFR Part 63 Subpart ZZZZ that were applicable to the fire pump engine. The facility was an area source for HAPs. The facility wide HAP emissions were very close to the HAP major source threshold of 25 tpy combine HAP. Therefore, accurate rounding of HAP emission rates was important to avoid overstating the facility’s potential HAP emissions. During this permitting action annual HAP permitted emissions for SN-01 through SN-08 were modified to list emissions limits without rounding to the nearest one-tenth. Permitted PM$_{10}$, SO$_2$, VOC, CO, and NOx and HAP emissions increased by 0.2 tons/year (tpy), 0.1 tpy, 0.2 tpy, 0.4 tpy, 1.9 tpy, and 0.490777 tpy, respectively.
Permit #1861-AOP-R7 was issued on June 2, 2015. This modification was to permit an Emergency Generator (SN-16) as an emission source and incorporate the applicable requirements of 40 CFR Part 60, Subpart JJJJ. Total permitted emission rates increased by 0.1 tons/year (tpy) PM/PM10, 0.1 tpy SO2, 0.1 tpy VOC, 8.6 tpy CO, 0.3 tpy NOx, and Total HAPs increased by 0.035 tpy.

Permit #1861-AOP-R8 was issued on May 2, 2017. This was a permit renewal. In addition to renewing the current Title V permit, the facility requested the following changes:

1. Revise HAP emission limits to be consistent with the most recent revision to the ADEQ non-criteria pollutant control strategy.
2. Addition of the existing gasoline storage tank as a permitted Source (SN-17). This tank is subject to 40 CFR Part 63 Subpart CCCCCC.
3. Addition of an existing propane-fired emergency reciprocating internal combustion engine (SN-18) located at the telecom tower on the south side of the Entergy Arkansas substation which is adjacent to the Union Power Station to the south.
4. Deletion of those permit provisions relating to the vacated Clean Air Interstate Rule (CAIR) and incorporation of the applicable requirements of the Cross-State Air Pollution Rule (CSAPR).
5. Updates to the Insignificant Activities (IA) list.
6. Correction of Specific condition #43 to correctly incorporate the applicable requirements of NSPS Subpart Da as applicable to the facility duct burners.

The permitted emissions increased by 0.1 tpy PM/PM10, 0.2 tpy SO2, 1.1 tpy VOC, 0.4 tpy CO, 0.3 tpy NOx, and 0.095 tpy Total HAP. Other emission increases/decreases were associated with this renewal because of rounding and implementing the most recent non-criteria pollutant control strategy.

Permit #1861-AOP-R9 was issued on April 13, 2018. This was a permit modification to:

1. Allow for the replacement of an existing 1000 gallon gasoline storage tank (SN-17) with a new 500 gallon gasoline storage tank (SN-19).
2. Allow for the replacement of an existing 450 gallon diesel fuel storage tank (Insignificant Activity) with a new 500 gallon diesel fuel storage tank (Insignificant Activity).
3. Remove the periodic PM testing requirement for the combustion turbines (Specific Condition #5 of permit #1861-AOP-R8).

The permitted emissions decreased by 0.4 tpy VOC and 0.03 tpy Total HAP.
SECTION IV: SPECIFIC CONDITIONS

SN-01 through SN-08
Eight (8) Combustion Turbine/Heat Recovery Steam Generators W/Duct Burner

Source Description

Union Power Station’s combustion turbines are designed at 1,946 MMBtu/hr (HHV) heat input capacity each. Each unit employs duct burners with a design maximum of 285 MM Btu/hr (HHV) for a combined plant heat input of 17,848 MM Btu/hr (HHV). Duct burner firing is limited to 4,000 hours per year, allowing a total plant heat input capacity of 145,495,680 MM Btu/year (HHV).

Specific Conditions

1. The permittee shall not exceed the emission rates set forth in the following table for each CT/HRSG/duct burner exhaust. The hourly emission rates set forth in the following table were based on a worse-case load scenario. [Regulation 19, §19.501 et seq., and 40 CFR Part 52, Subpart E]

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>lb/hr</th>
<th>Averaging Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM</td>
<td>21.6</td>
<td>3-hour</td>
</tr>
<tr>
<td>PM\textsubscript{10}</td>
<td>21.6</td>
<td>3-hour</td>
</tr>
</tbody>
</table>

2. The permittee shall not exceed the emission rates set forth in the following table for each CT/HRSG/duct burner exhaust. Compliance with the annual emission rates set forth in the following table shall be demonstrated by permitting these sources at maximum annual rates. Maximum annual emission rates are based on an average ambient temperature. Compliance with pound per hour worst-case emissions shall be deemed compliance with annual emission rates. [Regulation 19, §19.501 et seq. and §19.901 et seq. and 40 CFR Part 52 Subpart E]

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>tons per consecutive twelve months</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM</td>
<td>87.5</td>
</tr>
<tr>
<td>PM\textsubscript{10}</td>
<td>87.5</td>
</tr>
</tbody>
</table>

3. The permittee shall comply with the following BACT determinations for each CT/HRSG/duct burner exhaust. [Regulation 19, §19.901 et seq. and 40 CFR Part 52 Subpart E]

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>BACT Determination</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>PM</td>
<td>good combustion practices and clean</td>
<td>0.02</td>
<td>3-hr avg.</td>
</tr>
</tbody>
</table>
4. The permittee shall not cause to be discharged to the atmosphere from SN-01 through SN-08 stack gases which exhibit greater than 5% opacity. Compliance with this opacity limit shall be demonstrated by the use of natural gas. [Regulation 19, §19.503 and 40 CFR Part 52 Subpart E]

5. [RESERVED]

Sulfur Dioxide

6. The permittee shall not exceed the emission rates set forth in the following table at each CT/HRSG/duct burner exhaust. Compliance with the hourly emission rates set forth in the following table shall be demonstrated by permitting this source at maximum hourly rates. [Regulation 19, §19.501 et seq. and §19.901 et seq. and 40 CFR Part 52 Subpart E]

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>lb/hr</th>
<th>Averaging Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>SO₂</td>
<td>3.0</td>
<td>24-hour</td>
</tr>
</tbody>
</table>

7. The permittee shall not exceed the emission rates set forth in the following table at each source. Compliance with the annual emission rates set forth in the following table shall be demonstrated by permitting these sources at maximum annual rates. Maximum annual emission rates are based on an average ambient temperature. Compliance with pound per hour worst-case emissions shall be deemed compliance with annual emission rates. [Regulation 19, §19.501 et seq. and §19.901 et seq. and 40 CFR Part 52 Subpart E]

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>tons per consecutive twelve months</th>
</tr>
</thead>
<tbody>
<tr>
<td>SO₂</td>
<td>11.1</td>
</tr>
</tbody>
</table>

8. The permittee shall comply with the following BACT determinations for fuel sulfur content at each CT/HRSG/duct burner exhaust. Compliance with the emission factors set forth in the following table shall be demonstrated by Specific Condition 9. [Regulation 19, §19.901 et seq. of Regulation 19 and 40 CFR Part 52 Subpart E]

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>BACT Determination</th>
</tr>
</thead>
<tbody>
<tr>
<td>SO₂</td>
<td>use of low sulfur fuels</td>
</tr>
</tbody>
</table>

9. The monitoring requirements relative to SO₂ emissions from the CT/HRSG/duct burner exhausts shall be as follows: [Regulation 19, §19.703 and §19.901 et seq., NSPS Subpart GG, 40 CFR Part 75 Subpart B, and A.C.A. §8-4-203 as referenced by §8-4-304 and §8-4-311]
a. The permittee shall monitor the natural gas fuel sulfur content using the custom fuel monitoring schedule outlined in Appendix B of this permit in order to satisfy fuel bound sulfur monitoring requirements of NSPS Subpart GG.

b. The permittee shall conduct SO₂ emissions monitoring procedures in accordance with 40 CFR Part 75. These procedures shall include, measuring pipeline natural gas fuel flow rate using an in-line fuel flow meter, determining the gross calorific value of the pipeline natural gas at least once per month, and using the default emission rate of 0.0006 pounds of SO₂ per million Btu of heat input.

c. The permittee shall maintain records which demonstrate compliance with the above conditions.

Volatile Organic Compounds

10. The permittee shall not exceed the emission rates set forth in the following table at each source. Compliance with the hourly emission rates set forth in the following table shall be demonstrated by the performance test of four of the eight CT/HRSG/duct burner exhaust stacks for VOC. The hourly emission rates set forth in the following table were based on worst-case scenario. [Regulation 19, §19.501 et seq. and §19.901 et seq. and 40 CFR Part 52 Subpart E]

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>lb/hr</th>
<th>Averaging Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>VOC</td>
<td>6.1</td>
<td>3-hr. Avg.</td>
</tr>
</tbody>
</table>

11. The permittee shall not exceed the emission rates set forth in the following table at each source. Compliance with the annual emission rates set forth in the following table shall be demonstrated by permitting these sources at maximum annual rates. Maximum annual emission rates are based on an average ambient temperature. Compliance with pound per hour worst-case emissions shall be deemed compliance with annual emission rates. [Regulation 19, §19.501 et seq. and §19.901 et seq. and 40 CFR Part 52 Subpart E]

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>tons per consecutive twelve months</th>
</tr>
</thead>
<tbody>
<tr>
<td>VOC</td>
<td>18.0</td>
</tr>
</tbody>
</table>

12. The permittee shall comply with the following BACT determinations for each CT/HRSG/duct burner exhaust stack for VOC. Compliance with the emission factors set forth in the following table shall be demonstrated by the performance test of four of the eight stacks for VOC. [Regulation 19, §19.901 et seq. and 40 CFR Part 52 Subpart E]

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>BACT Determination</th>
</tr>
</thead>
<tbody>
<tr>
<td>VOC</td>
<td>combustor design and good operating practices</td>
</tr>
</tbody>
</table>

*at 15% oxygen

13. The permittee shall perform stack testing of four of the eight CT/HRSG/duct burner exhaust stacks for VOC to demonstrate compliance with the limits specified in Specific
Conditions #10 and #12. Testing shall be performed every five years in accordance with Plantwide Condition #3 and EPA Reference Method 25A as found in 40 CFR Part 60 Appendix A. Method 25A may be modified to allow for off-site analysis of the integrated samples collected during the tests for enhanced VOC detection. The off-site analysis procedures shall be detailed in the test protocol. Testing shall be performed at greater than or equal to 90% of the maximum operating load. The Department reserves the right to select the CT/HRSG/duct burner to be tested. The specific stacks tested shall be rotated every five years. [Regulation 19, §19.702 and §19.901 et seq. and 40 CFR Part 52 Subpart E]

Carbon Monoxide

14. The permittee shall not exceed the emission rates set forth in the following table at each CT/HRSG/duct burner exhaust. Each combustion turbine/heat recovery steam generating unit will be equipped with a CO CEMS. This CEMS shall be used to demonstrate compliance with the hourly emission rate set forth in the following table. [Regulation 19, §19.501 et seq. and §19.901 et seq. and 40 CFR Part 52 Subpart E]

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>lb/hr</th>
<th>Averaging Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO</td>
<td>47.3</td>
<td>24-hour</td>
</tr>
</tbody>
</table>

15. The permittee shall not exceed the emission rates set forth in the following table at each source. Compliance with the annual emission rates set forth in the following table shall be demonstrated by Specific Condition #17. [Regulation 19, §19.501 et seq. and §19.901 et seq. and 40 CFR Part 52 Subpart E]

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>tons per consecutive twelve months</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO</td>
<td>155.5</td>
</tr>
</tbody>
</table>

16. The permittee shall comply with the following BACT determinations for each CT/HRSG/duct burner exhaust. This CEMS shall be used to determine compliance with the hourly emission rates set forth in the following table. [Regulation 19, §19.901 et seq. and 40 CFR Part 52 Subpart E]

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>BACT Determination</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO</td>
<td>combustor design and good operating practices 9.5 ppmvd* 30-day avg.</td>
</tr>
</tbody>
</table>

*corrected to 15% oxygen

17. The permittee shall install, maintain, and operate a CO CEMS on each CT/HRSG/duct burner exhaust stack. The CEMS shall comply with the ADEQ’s Continuous Emissions Monitoring Systems Conditions. A copy is provided in Appendix C. The CEMS data may be used by the Department for enforcement purposes. The CEMS shall be used to demonstrate compliance with the CO mass emission limits specified in Specific Conditions #14, and #15 and the CO concentration emission limit specified in Specific
Condition #16. [Regulation 19, §19.703 and §19.901 et seq., 40 CFR Part 52 Subpart E, and A.C.A. §8-4-203 as referenced by §8-4-304 and §8-4-311]

Nitrogen Oxides

18. The permittee shall not exceed the emission rates set forth in the following table at each CT/HRSG/duct burner exhaust. The CT/HRSG/duct burner exhaust will be equipped with a NOX CEMS. This CEMS shall be used to determine compliance with the hourly emission rates set forth in the following table. [Regulation 19, §19.501 et seq. and §19.901 et seq. and 40 CFR Part 52 Subpart E]

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>lb/hr</th>
<th>Averaging Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOX</td>
<td>33.8</td>
<td>24-hour</td>
</tr>
</tbody>
</table>

19. The permittee shall not exceed the emission rates set forth in the following table at each CT/HRSG/duct burner exhaust. Compliance with the annual emission rates set forth in the following table shall be demonstrated by Specific Condition #21. [Regulation 19, §19.501 et seq. and §19.901 et seq. and 40 CFR Part 52 Subpart E]

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>tons per consecutive twelve months</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOX</td>
<td>114.8</td>
</tr>
</tbody>
</table>

20. The permittee shall comply with the following BACT determinations for each CT/HRSG/duct burner stack. The CT/HRSG/duct burner exhaust will be equipped with a NOX CEMS. This CEMS shall be used to determine compliance with the emission rates set forth in the following table. [Regulation 19, §19.901 et seq. and 40 CFR Part 52 Subpart E]

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>BACT Determination</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOX</td>
<td>SCR 3.5 ppmvd*</td>
</tr>
</tbody>
</table>

*corrected to 15% oxygen

21. The permittee shall install, calibrate, maintain, and operate a NOx CEMS on each CT/HRSG/duct burner exhaust stack. The measured concentrations of NOx and O2 in the flue gas along with the measured fuel flow shall be used to calculate NOx mass emissions. The CEMS shall comply with the ADEQ’s Continuous Emission Monitoring Systems Conditions. The CEMS data may be used by the Department for enforcement purposes. The CEMS shall be used to demonstrate compliance with Specific Conditions. #18, #19, and #20 [Regulation 19, §19.703 and §19.901 et seq., 40 CFR Part 52 Subpart E, and A.C.A. §8-4-203 as referenced by §8-4-304 and §8-4-311]

Lead

22. The permittee shall not exceed the emission rates set forth in the following table for each CT/HRSG/duct burner exhaust. Compliance with the hourly emission rates set forth in the following table shall be demonstrated by the use of natural gas. The hourly emission
rates set forth in the following table are based on the worst-case scenario. [Regulation 19, §19.501 et seq. and 40 CFR Part 52 Subpart E]

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>lb/hr</th>
<th>Averaging Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pb</td>
<td>0.002</td>
<td>24-hour</td>
</tr>
</tbody>
</table>

23. The permittee shall not exceed the emission rates set forth in the following table for each source. Compliance with the annual emission rates set forth in the following table shall be demonstrated by permitting these sources at maximum annual rates. Maximum annual emission rates are based on an average ambient temperature. Compliance with pound per hour worst-case emissions shall be deemed compliance with annual emission rates. [Regulation 19, §19.501 et seq. and 40 CFR Part 52 Subpart E]

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>tons per consecutive twelve months</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pb</td>
<td>0.004</td>
</tr>
</tbody>
</table>

Sulfuric Acid Mist (H2SO4)

24. The permittee shall not exceed the emission rates set forth in the following table at each source. Compliance with the hourly emission rates set forth in the following table shall be demonstrated by Specific Condition #9. The hourly emission rates set forth in the following table are based on the worst-case scenario. [Regulation 19, §19.501 et seq. and §19.901 et seq. and 40 CFR Part 52 Subpart E]

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>lb/hr</th>
<th>Averaging Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>H2SO4</td>
<td>0.35</td>
<td>24-hour</td>
</tr>
</tbody>
</table>

25. The permittee shall not exceed the annual emission rates set forth in the following table at each source. Compliance with the annual emission rates set forth in the following table shall be demonstrated by Specific Condition #9. [Regulation 19, §19.501 et seq. and §19.901 et seq. and 40 CFR Part 52 Subpart E]

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>tons per consecutive twelve months</th>
</tr>
</thead>
<tbody>
<tr>
<td>H2SO4</td>
<td>1.28</td>
</tr>
</tbody>
</table>

26. The permittee shall comply with the following BACT determinations for each of the CT/HRSG/duct burner exhaust stacks for H2SO4. Compliance with the emission factor set forth in the following table shall be demonstrated by Specific Condition #9. [Regulation 19, §19.901 et seq. and 40 CFR Part 52 Subpart E]

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>BACT Determination</th>
</tr>
</thead>
<tbody>
<tr>
<td>H2SO4</td>
<td>use of low sulfur fuels</td>
</tr>
</tbody>
</table>

Non-criteria Pollutants
27. The permittee shall not exceed the emission rates set forth in the following table for each CT/HRSG/duct burner exhaust. Initial compliance has been determined by performance testing requirements. Ongoing compliance with emission rates shall be demonstrated by the exclusive use of pipeline quality natural gas, duct burner operating limits, and required performance testing. [Regulation 18, §18.801 and A.C.A. §8-4-203 as referenced by §8-4-304 and §8-4-311]

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>lb/hr</th>
<th>Averaging Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ammonia**</td>
<td>30.7</td>
<td>3-hour</td>
</tr>
<tr>
<td>Total HAP</td>
<td>0.72</td>
<td>3-hour</td>
</tr>
</tbody>
</table>

*HAPs included in the VOC totals. Other HAPs are not included in any other totals unless specifically stated. **Air Contaminants such as ammonia, acetone, and certain halogenated solvents are not VOCs or HAPs.

28. The permittee shall not exceed the emission rates set forth in the following table at each CT/HRSG/duct burner exhaust. Initial compliance has been demonstrated by performance testing. Ongoing compliance shall be determined by compliance with and the exclusive use of pipeline quality natural gas, duct burner operating limits, and required performance testing. [Regulation 18, §18.801 and A.C.A. §8-4-203 as referenced by §8-4-304 and §8-4-311]

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>tons per consecutive twelve months</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ammonia**</td>
<td>134.5</td>
</tr>
<tr>
<td>Total HAP</td>
<td>3.063</td>
</tr>
</tbody>
</table>

*HAPs included in the VOC totals. Other HAPs are not included in any other totals unless specifically stated. **Air Contaminants such as ammonia, acetone, and certain halogenated solvents are not VOCs or HAPs.

29. The permittee shall conduct a performance test on any one stack for ammonia concentration at SN-01 through SN-08 once every five years to assure compliance with the limits set in Specific Condition #27. The permittee shall use EPA Conditional Test Method 027, Reference Method 320, or other department pre-approved methodology. The test shall be performed when operating in combined cycle at greater than 90% of capacity. The specific stack tested shall be rotated every five years. [Regulation 18, §18.1002 and A.C.A. §8-4-203 as referenced by §8-4-304 and §8-4-311]

Throughput Limitations

30. Each combustion turbine/heat recovery steam generating unit may only fire pipeline quality natural gas. [Regulation 19, §19.705 and §19.901 et seq., A.C.A. §8-4-203 as referenced by §8-4-304 and §8-4-311 and 40 CFR 70.6]

31. The pipeline quality natural gas combusted in the combustion turbine/heat recovery steam generating units shall be natural gas whose quality would meet the tariff of any major interstate gas transporter. [Regulation 19, §19.705 and §19.901 et seq., A.C.A. §8-4-203 as referenced by §8-4-304 and §8-4-311 and 40 CFR 70.6]
32. The permittee’s feed to the duct burners shall not exceed 9,120,000 MMBtu (HHV) per twelve consecutive months period. [Regulation 19, §19.705 and §19.901 et seq., A.C.A. §8-4-203 as referenced by §8-4-304 and §8-4-311 and 40 CFR 70.6]

33. The permittee shall maintain monthly records to demonstrate compliance with Specific Condition #32. Records shall be kept on-site and made available to Department personnel upon request. Records shall be updated monthly within 15 days of the month to which the records pertain. A twelve month rolling total shall be kept. Records shall be submitted to the Department in accordance with General Provision #7. [Regulation 19, §19.705 and §19.901 et seq., A.C.A. §8-4-203 as referenced by §8-4-304 and §8-4-311 and 40 CFR 70.6]

Startup and Shutdown

34. The permittee shall maintain a log or equivalent electronic data storage which shall indicate the date, start time, and duration of each SUSD Event. A “SUSD Event” is either a startup or a shutdown. “Startup” shall be defined as a period of time beginning with the hour that fire first occurs within the combustion turbine firing chamber and ending when the unit is operating in Mode 6 (i.e., steady state as defined by the combustion turbine manufacturer). “Shutdown” shall be defined as a period of time beginning with the hour that the turbine operating load falls below Mode 6 and ending when emissions are no longer detected from the source. This log or equivalent electronic data storage shall be made available to Department personnel upon request.
 a. Operating mode, specifically whether or not a particular unit is at or below Mode 6, shall be able to be identified at any time from the control area for that unit and shall be available for inspection by ADEQ representatives at any time.
 b. During a SUSD Event, the CEM system for the affected CT/HRSG (SN-01 thru SN-08) must be operating. [Regulation 19, §19.703 and §19.705, 40 CFR Part 52, Subpart E and A.C.A. §8-4-203 as referenced by §8-4-304 and §8-4-311]

35. The lb/hr and concentration limits in Specific Conditions #1, #3, #10, #12, #14, #16, #18, and #20 do not apply during Startup/Shutdown (SUSD) events. Compliance with CO and NOX emission limits during SUSD shall be demonstrated by compliance with Specific Condition #36 through #38. [Regulation 19, §19.501 et seq. and §19.901 et seq. and 40 CFR Part 52 Subpart E]

36. During a SUSD Event, the permittee shall not exceed the emission rates shown below at each CT/HRSG (SN-01 through SN-08). [Regulation 19, §19.501 et seq. and §19.901 et seq. and 40 CFR Part 52 Subpart E]

<table>
<thead>
<tr>
<th>Event</th>
<th>NOx Emissions per CT/HRSG (lb/hr)</th>
<th>CO Emissions per CT/HRSG (lb/hr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUSD Event</td>
<td>350.0</td>
<td>850.0</td>
</tr>
</tbody>
</table>
37. The permittee shall measure and record the NOX and CO emissions on a 3-hour rolling average basis during a SUSD Event for comparison to the table above. [Regulation §19.705 and 40 CFR Part 52, Subpart E]

38. The rolling 12-month emission rates shown below shall not be exceeded during SUSD Events for each CT/HRSG. The permittee shall maintain a record of the total NOx and CO emissions measured by the CEM system during each SUSD Event and shall calculate a calendar month and rolling 12-month total of SUSD emissions at each CT/HRSG. [Regulation 19, §19.501 et seq. and §19.901 et seq. and 40 CFR Part 52 Subpart E]

<table>
<thead>
<tr>
<th>Event</th>
<th>Rolling 12-month NOx Emissions per CT/HRSG (tpy)</th>
<th>Rolling 12-month CO Emissions per CT/HRSG (tpy)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUSD Event</td>
<td>21.0</td>
<td>85.0</td>
</tr>
</tbody>
</table>

39. For the purposes of this permit, “upset condition” reports as required by 19.601 of Regulation 19 shall be required for any exceedance of the SUSD Event 3-hour rolling average emissions or rolling 12-month emissions rates listed above. [Regulation §19.705 and 40 CFR Part 52, Subpart E]

40. Emissions recorded during SUSD Events shall also count toward the overall annual limits for each CT/HRSG. [Regulation §19.705 and 40 CFR Part 52, Subpart E]

Combustion Turbine Tuning

41. The hourly NOx emission rate listed in Specific Condition #18 (33.8 lb/hr, averaging 24-hour period) is not applicable during combustion turbine tuning. The hourly NOx emission rate shall not exceed 65 lbs/hour during combustion turbine tuning. Combustion turbine tuning shall not occur more than two (2) times per consecutive twelve month period, per combustion turbine, and shall not exceed 24 hours per combustion turbine tuning period. Emissions during combustion turbine tuning hours shall be included in determining compliance with Specific Condition #19 (<114.8 tpy) and Specific Condition #20 (BACT Determination: 3.5 ppmvd corrected to 15% oxygen, 30-day average). The permittee shall maintain records of combustion turbine tuning on site and be made available to Department personnel upon request.

New Source Performance Standards (NSPS)

42. Each combustion turbine/heat recovery steam generating unit is subject to and shall comply with applicable provisions of 40 CFR Part 60 Subpart A - General Provisions and 40 CFR Part 60 Subpart GG - Standards of Performance for Stationary Gas Turbines (included in Appendix B). Applicable provisions of Subpart GG include but are not limited to, the following:
a. The permittee shall not exceed a NO\textsubscript{X} emission rate of 109.0 ppmvd at 15% oxygen on a dry basis. Specific Condition #20 is demonstration of compliance with these standards. [40 CFR §60.332(a)(1)]

b. The permittee shall not burn any fuel which contains sulfur in excess of 0.8 percent by weight. Compliance with this condition shall be demonstrated by compliance with Specific Condition #9. [40 CFR §60.333(b)]

c. The permittee shall report any monitoring period during which the sulfur content of the fuel being fired in the gas turbines exceeds 0.8 percent by weight. [40 CFR §60.334(c)(2)]

d. Initial compliance testing for NO\textsubscript{X} and SO\textsubscript{2} is required within 180 days after start-up. Compliance with the SO\textsubscript{2} requirements will be demonstrated by compliance with Specific Condition #9.a. Initial compliance testing for NO\textsubscript{X} and SO\textsubscript{2} was completed on 05/16/2003 and in accordance with the test methods in 40 CFR Part 60, Appendix A. [40 CFR §60.335 and §60.8]

43. The duct burners at SN-01 through 08 are subject to and shall comply with applicable provisions of 40 CFR Part 60 Subpart A - General Provisions and Subpart Da - Standards of Performance for Electric Utility Steam Generating Units (Appendix A). Applicable provisions of Subpart Da include, but are not limited to, the following: [Reg. 19.304 and 40 CFR §60, Subpart Da]

a. No gasses shall be discharged into the atmosphere which contains sulfur dioxide in excess of 0.20 lb/MMBtu heat input based on a 30-day rolling average. Compliance shall be demonstrated by requirements of Specific Condition #8 and #9. [40 CFR §60.43Da(b)(2)and(g)]

b. No gasses shall be discharged into the atmosphere which contains nitrogen oxides in excess of 1.6 lb/megawatt-hour gross energy output. The nitrogen oxides emission rate from the duct burner component of the combined cycle system shall be calculated by subtracting the nitrogen oxides emission rate measured for the unfired duct burner case from the nitrogen oxides emission rate measured for the fired duct burner case.[§60.44Da(d)(1)]

c. The SO\textsubscript{2} and nitrogen oxide emission standards apply at all times except during periods of startup, shutdown, or malfunction. [§60.48Da(a)]

d. Nitrogen oxide emissions shall be calculated by multiplying the average hourly NO\textsubscript{X} concentration by the average hourly flow rate and divided by the average hourly gross heat rate or other method approved by the Administrator. [§60.48Da(i)]
e. Compliance with the nitrogen oxide emission limitation is determined by the three-run average (nominal 1-hour runs) for the initial and subsequent performance tests. Alternatively, compliance with the standard may be determined on a 30-day rolling average basis using CEMS specified under §§60.49Da(c) and (d) for measuring NOx and O2, the continuous monitoring system specified under §60.49Da(k) for measuring gross energy output, and continuous fuel flow meters following the appropriate measurements procedures specified in Appendix D of 40 CFR §75. [§60.48Da(k)]

f. Initial compliance testing for SO2 and NOx was conducted within 180 days after startup of each power block in accordance with test methods in 40 CFR §60, Appendix A or alternative approved methods. [40 CFR §60, Subpart Da]

44. The following notifications to the Department are required for the combustion turbines and the duct burners: CEMS, opacity, and emissions performance testing postmarked not less than 30 days prior to testing. This requirement only applies to testing conducted pursuant to New Source Performance Standards (NSPS) requirements. [40 CFR §60.7(a)]

Acid Rain Program

45. The affected units (SN-01 through SN-08) are subject to and shall comply with applicable provisions of the Acid Rain Program (40 CFR Parts 72, 73, and 75).

46. The submission of the NOx, SO2, and O2 or CO2 monitoring plans and notice of CEMS certification testing is required at least 45 days prior to the CEMS certification testing. [40 CFR Part 75 Continuous Emission Monitoring Subpart G]

47. A monitoring plan is required to be submitted for NOx, SO2, and O2 or CO2 monitoring. [40 CFR Part 75 - Continuous Emission Monitoring Subpart G]

48. The initial NOx, and O2 or CO2 CEMS certification testing is to occur no later than 90 days after the unit commences commercial operation except the testing must occur prior to the date this unit is declared commercial in accordance with DOE Form EIA-860. [40 CFR Part 75 Subpart A]

49. The permittee shall ensure that the continuous emissions monitoring systems are in operation and monitoring all unit emissions at all times, except during periods of calibration, quality assurance, preventative maintenance or repair. [40 CFR Part 75.10.]
The four (4) mechanical draft cooling towers are each equipped with drift eliminators. Each tower has nine cells.

Specific Conditions

50. The permittee shall not exceed the emission rates set forth in the following table for each cooling tower. The emission rates are based on maximum capacity. [Regulation 19, §19.501 et seq. and 40 CFR Part 52, Subpart E]

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>lb/hr (24-hr average)</th>
<th>tpy</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM<sub>10</sub></td>
<td>0.7</td>
<td>3.1</td>
</tr>
</tbody>
</table>

51. The permittee shall not exceed the emission rates set forth in the following table at each source for each cooling tower. The permittee shall demonstrate compliance with this condition by Specific Condition #53. [Regulation 18, §18.801, and A.C.A. §8-4-203 as referenced by A.C.A. §8-4-304 and §8-4-311]

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>lb/hr (24-hr average)</th>
<th>tpy</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM</td>
<td>1.4</td>
<td>6.1</td>
</tr>
</tbody>
</table>

52. The permittee shall not cause to be discharged to the atmosphere from SN-11 through SN-14 exhausts which exhibit greater than 20% opacity. Compliance with this opacity limit shall be demonstrated by compliance with Specific Condition #53. [Regulation 19, §19.503 and 40 CFR 52 Subpart E]

53. The permittee shall monitor monthly the TDS at cooling tower (SN-11 through 14). Results less than 3,000 ppm TDS, or equivalent conductivity, will demonstrate compliance with the requirements in Specific Conditions #50 and #51. These records shall be updated on a monthly basis. If the facility chooses to use conductivity in place of TDS testing the permittee shall develop a conductivity vs. TDS curve and test for conductivity on a weekly basis when the cooling towers are operating. The conductivity result shall not exceed the level which correlates with 3,000 ppm TDS for any sample result taken when the cooling towers are operating. The permittee shall also determine, directly, TDS once every quarter. The results shall be kept on site and made available to Department personnel upon request. The permittee shall submit these records in accordance with General Provision 7. [Regulation 19, §19.705 and §19.703, Regulation
Entergy Arkansas, LLC - Union Power Station
Permit #: 1861-AOP-R10
AFIN: 70-00543

18, §18.1004 and §18.1003, and A.C.A. §8-4-203 as referenced by §8-4-304 and §8-4-311]
SN-15
Emergency Fire Pump Engine

Source Description

SN-15 is a Clarke/John Deere 240-hp, diesel fired, 6 cylinder emergency fire pump engine. This existing source was considered an insignificant activity prior to the issuance of permit 1861-AOP-R6. The 6-cylinder fire pump engine displacement is 7 liters (1.16 L per cylinder) and it is a 2001 model. As such, it is subject to 40 CFR 63, National Emission Standards for Hazardous Air Pollutants (NESHAP) for Stationary Reciprocating Internal combustion Engines (RICE) (Subpart ZZZZ).

Specific Conditions

54. The permittee shall not exceed the emission rates set forth in the following table. The permittee shall demonstrate compliance with this condition by complying with Specific Conditions #57 through #67. [Regulation 19 §19.501 et seq. and 40 CFR Part 52, Subpart E]

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>lb/hr</th>
<th>tpy</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM$_{10}$</td>
<td>0.6</td>
<td>0.2</td>
</tr>
<tr>
<td>SO$_2$</td>
<td>0.5</td>
<td>0.2</td>
</tr>
<tr>
<td>VOC</td>
<td>0.6</td>
<td>0.2</td>
</tr>
<tr>
<td>CO</td>
<td>1.6</td>
<td>0.4</td>
</tr>
<tr>
<td>NO$_x$</td>
<td>7.0</td>
<td>1.8</td>
</tr>
</tbody>
</table>

55. The permittee shall not exceed the emission rates set forth in the following table. The permittee shall demonstrate compliance with this condition by complying with Specific Conditions #57 through #67. [Regulation 18 §18.801 and A.C.A. §8-4-203 as referenced by §8-4-304 and §8-4-311]

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>lb/hr</th>
<th>tpy</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM</td>
<td>0.6</td>
<td>0.2</td>
</tr>
<tr>
<td>Total HAP</td>
<td>0.01</td>
<td>0.01</td>
</tr>
</tbody>
</table>

*HAPs included in the VOC totals. Other HAPs are not included in any other totals unless specifically stated.

56. Visible emissions may not exceed the limits specified in the following table of this permit as measured by EPA Reference Method 9.
57. Annual observations of the opacity from SN-15 shall be conducted by a person trained but not necessarily certified in EPA Reference Method 9. If visible emissions in excess of the permitted levels are detected, the permittee shall immediately take action to identify the cause of the visible emissions in excess of the permit limit, implement corrective action, and document that visible emissions did not appear to be in excess of the permitted opacity following the corrective action. The permittee shall maintain records which contain the following items in order to demonstrate compliance with this specific condition. These records shall be updated annually, kept on site, and made available to Department personnel upon request.
 a. The date and time of the observation.
 b. If visible emissions which appeared to be above the permitted limit were detected.
 c. If visible emissions which appeared to be above the permitted limit were detected, the cause of the exceedance of the opacity limit, the corrective action taken, and if the visible emissions appeared to be below the permitted limit after the corrective action was taken.
 d. The name of the person conducting the opacity observations.

58. The permittee shall not operate the emergency generator SN-15 in excess of 500 total hours (emergency and non-emergency) per calendar year in order to demonstrate compliance with the annual emission rate limits. Emergency operation in excess of these hours may be allowable but shall be reported and will be evaluated in accordance with Regulation 19 §19.602 and other applicable regulations. [Regulation 19 §19.705, A.C.A. §8-4-203 as referenced by §8-4-304 and §8-4-311, and 40 CFR 70.6]

59. The permittee shall maintain monthly records to demonstrate compliance with Specific Condition #58. The permittee shall update these records by the fifteenth day of the month following the month to which the records pertain. The calendar year totals and each individual month’s data shall be maintained on-site, made available to Department personnel upon request, and submitted in accordance with General Provision #7. [Regulation 19 §19.705 and 40 CFR Part 52, Subpart E]

60. The permittee shall meet the following requirements of Table 2c of 40 CFR Part 63 Subpart ZZZZ:
 a. Change oil and filter every 500 hours of operation or annually, whichever comes first.
 b. Inspect air cleaner every 1,000 hours of operation or annually, whichever comes first.
 c. Inspect all hoses and belts every 500 hours of operation or annually, whichever comes first, and replace as necessary.
 [Regulation No. 19 §19.304 and 40 CFR Part 63, Subpart ZZZZ, §63.6603(a)]
61. The permittee shall operate and maintain the stationary RICE and after-treatment control device (if any) according to the manufacturer’s emission-related written instructions or develop their own maintenance plan which must provide to the extent practicable for the maintenance and operation of the engine in a manner consistent with good air pollution control practice for minimizing emissions. [Regulation No. 19 §19.304 and 40 CFR Part 63, Subpart ZZZZ, §63.6625(e)(2)]

62. The permittee shall install a non-resettable hour meter if one is not already installed. [Regulation No. 19 §19.304 and 40 CFR Part 63, Subpart ZZZZ, §63.6625(f)]

63. The permittee shall minimize the engine’s time spent at idle during startup and minimize the engine’s startup time to a period needed for appropriate and safe loading of the engine, not to exceed 30 minutes, after which time the emission standards applicable to all times other than startup in Table 2c of 40 CFR Part 63 Subpart ZZZZ apply. [Regulation No. 19 §19.304 and 40 CFR Part 63, Subpart ZZZZ, §63.6625(h)]

64. The permittee may operate the emergency stationary RICE for the purpose of maintenance checks and readiness testing, provided that the tests are recommended by Federal, State, or local government, the manufacturer, the vendor or the insurance company associated with the engine. Maintenance checks and readiness testing of such units is limited to 100 hours per year. The emergency stationary RICE may be operated up to 50 hours per year in non-emergency situations, but those hours per year are counted towards the 100 hours per year provided for maintenance and testing. The hours cannot be used for peak shaving or to generate income for the facility to supply power to the electric grid or otherwise supply power as part of a financial arrangement with another entity. There are no time limits for the use of an emergency stationary RICE in emergency situations. The engine may not be operated for more than 30 minutes prior to the time when the emergency conditions expected to occur, and the engine operation must be terminated immediately after the facility is notified that the emergency condition is no longer imminent. [Regulation No. 19 §19.304 and 40 CFR Part 63, Subpart ZZZZ, §63.6640(f)(1)(i, ii, iii)]

65. The permittee shall keep records of the maintenance conducted on the stationary RICE in order to demonstrate that it was operated and maintained according to the maintenance plan. [Regulation No. 19 §19.304 and 40 CFR Part 63, Subpart ZZZZ, §63.6655(e)(2)]

66. The permittee shall keep records of the hours of operation of engine that is recorded through the non-resettable hour meter. The permittee must document how many hours are spent for emergency operation; including what classified the operation as emergency and how many hours are spent for non-emergency operation. If the engines are used for demand response operation, records of notification of the emergency situation, and the time the engine was operated as part of demand response. [Regulation No. 19 §19.304 and 40 CFR Part 63, Subpart ZZZZ, §63.6655(f)(1)]
67. The permittee shall maintain files of all information required by 40 CFR Part 63 Subpart ZZZZ recorded in a form suitable and readily available for expeditious inspection and review. The files shall be retained for at least 5 years following the date of each occurrence, measurement, maintenance, corrective action, report, or record. At a minimum, the most recent 2 years of data shall be retained on site. [Regulation No. 19 §19.304 and 40 CFR Part 63, Subpart ZZZZ,§63.6660]
SN-16
Plant Telecom Emergency Generator

Source Description

The plant telecom emergency generator is a 30 kW (40 hp) spark ignition internal combustion engine powered by propane. The engine is used to support the plant telecom and network systems. The generator is located at the NW corner of the Administration building and is supplied by a leased 500 gallon propane tank. The generator is for emergency use only, and is operated for routine maintenance, quarterly operational checks, and as needed by power outage demand only.

Specific Conditions

68. The permittee shall not exceed the emission rates set forth in the following table. The permittee shall demonstrate compliance with this condition by complying with Specific Conditions #71 through #78. [Regulation 19 §19.501 et seq. and 40 CFR Part 52, Subpart E]

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>lb/hr</th>
<th>tpy</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM\textsubscript{10}</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>SO\textsubscript{2}</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>VOC</td>
<td>0.3</td>
<td>0.1</td>
</tr>
<tr>
<td>CO</td>
<td>34.2</td>
<td>8.6</td>
</tr>
<tr>
<td>NO\textsubscript{x}</td>
<td>0.9</td>
<td>0.3</td>
</tr>
</tbody>
</table>

69. The permittee shall not exceed the emission rates set forth in the following table. The permittee shall demonstrate compliance with this condition by Specific Condition #71 and #72. [Regulation 18, §18.801, and A.C.A. §8-4-203 as referenced by A.C.A. §8-4-304 and §8-4-311]

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>lb/hr (24-hr average)</th>
<th>tpy</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Total HAP</td>
<td>0.03</td>
<td>0.01</td>
</tr>
</tbody>
</table>

*HAPs included in the VOC totals. Other HAPs are not included in any other totals unless specifically stated.

70. Visible emissions may not exceed the limits specified in the following table of this permit as measured by EPA Reference Method 9. Compliance with this condition shall be demonstrated by compliance with Specific Condition #71.
71. The permittee shall only use propane as fuel for the Emergency Generator (SN-16).
[Regulation 19, §19.705, A.C.A. §8-4-203 as referenced by A.C.A. §8-4-304 and §8-4-311, and 40 CFR Part 70.6]

72. The permittee shall not operate the emergency generator SN-16 in excess of 500 total hours (emergency and non-emergency) per calendar year in order to demonstrate compliance with the annual emission rate limits. Emergency operation in excess of these hours may be allowable but shall be reported and will be evaluated in accordance with Regulation 19 §19.602 and other applicable regulations. [Regulation 19 §19.705, A.C.A. §8-4-203 as referenced by §8-4-304 and §8-4-311, and 40 CFR 70.6]

73. The permittee shall maintain monthly records to demonstrate compliance with Specific Condition #72. The permittee shall update these records by the fifteenth day of the month following the month to which the records pertain. The calendar year totals and each individual month’s data shall be maintained on-site, made available to Department personnel upon request, and submitted in accordance with General Provision #7. [Regulation 19 §19.705 and 40 CFR Part 52, Subpart E]

74. The permittee shall comply with the emission standards in Table 1 of 40 CFR Part 60 Subpart JJJJ for engine SN-16, over the entire life of the engine, as listed below:

<table>
<thead>
<tr>
<th>Source</th>
<th>NOx g/HP-hr</th>
<th>CO g/HP/hr</th>
</tr>
</thead>
<tbody>
<tr>
<td>SN-16</td>
<td>10</td>
<td>387</td>
</tr>
</tbody>
</table>

[Regulation No. 19 §19.304, 40 CFR Part 60, Subpart JJJJ §60.4233(d), §60.4234]

75. The permittee shall install a non-resettable hour meter upon startup of SN-16. [Regulation No. 19 §19.304, 40 CFR Part 60, Subpart JJJJ §60.4237(c)]

76. The permittee shall demonstrate compliance by purchasing an engine certified according to procedures specified in 40 CFR 60 Subpart JJJJ, for the same model year demonstrating compliance according to one of the methods specified in §60.4243(a). [Regulation No. 19 §19.304, 40 CFR Part 60, Subpart JJJJ §60.4243(b)(1)]

77. The permittee shall operate SN-16 according the requirements in §60.4243(d)(1) through (3) as described below:
 a. There is no time limit on the use of emergency engines in emergency situations.
 b. The permittee may operate the emergency engines for any combination of purposes specified in §60.4243(d)(2)(i) through (iii) for a maximum of 100 hours per calendar year.
c. The emergency engines may be operated for up to 50 hours per year for non-emergency situations. The 50 hours of operation in non-emergency situations are counted as part of the 100 hours per calendar year for maintenance and testing and emergency demand response.

[Regulation No. 19 §19.304, 40 CFR Part 60, Subpart JJJJ, 60.4243(d)]

78. The permittee shall keep record of the following for SN-16:
 a. All notification submitted to comply with this subpart and all documentation supporting any notification.
 b. Maintenance conducted on the engines.
 c. Documentation from the manufacturer that the engines are certified to meet the required emission standards and information required by other applicable regulations.

79. The plant telecom emergency engine (SN-16) is subject to and shall comply with the applicable requirements of 40 CFR Part 63 Subpart ZZZZ – National Emission Standards for Hazardous Air Pollutants for Stationary Reciprocating Internal Combustion Engines. As a new stationary RICE located at an area source of HAP emissions, SN-16 must meet the requirements of Subpart ZZZZ by meeting the applicable requirements of 40 CFR Part 60 Subpart JJJJ. No further requirements apply for SN-16 under subpart ZZZZ.

[Regulation No. 19, §19.304 and 40 CFR §63.6590(c)(1)]
Entergy Arkansas, LLC - Union Power Station
Permit #: 1861-AOP-R10
AFIN: 70-00543

SN-19
Gasoline Storage Tank

Source Description

SN-19 is a 500 gallon gasoline storage tank. This is an existing unit that will be added as a permitted source. The tank is subject to 40 CFR Part 63 Subpart CCCCCC – National Emission standards for Hazardous Air Pollutants for Source Category: Gasoline Dispensing Facilities.

Specific Conditions

80. The permittee shall not exceed the emission rates set forth in the following table. The permittee shall demonstrate compliance with this condition by complying with Specific Conditions #82 through 84. [Reg.19.501 et seq. and 40 C.F.R. § 52 Subpart E]

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>lb/hr</th>
<th>tpy</th>
</tr>
</thead>
<tbody>
<tr>
<td>VOC</td>
<td>6.8</td>
<td>0.6</td>
</tr>
</tbody>
</table>

81. The permittee shall not exceed the emission rates set forth in the following table. The permittee shall demonstrate compliance with this condition by complying with Specific Conditions #82 through 84 [Reg.18.801 and Ark. Code Ann. § 8-4-203 as referenced by Ark. Code Ann. §§ 8-4-304 and 8-4-311]

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>lb/hr</th>
<th>tpy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total HAP</td>
<td>0.38</td>
<td>0.03</td>
</tr>
</tbody>
</table>

82. The permittee shall not exceed a maximum throughput of gasoline of 120,000 gallons per consecutive 12 month period at the 500 gallon gasoline tank (SN-19). [Regulation 19, §19.705 and A.C.A. §8-4-203 as referenced by A.C.A. §8-4-304 and §8-4-311]

83. The permittee shall maintain monthly records to demonstrate compliance with Specific Condition #82. The permittee shall update these records by the fifteenth day of the month following the month to which the records pertain. The calendar year totals and each individual month’s data shall be maintained on-site, made available to Department personnel upon request, and submitted in accordance with General Provision #7. [Regulation 19 §19.705 and 40 CFR Part 52, Subpart E]

84. The gasoline storage tank and associated dispensing equipment (SN-19) is subject to and shall comply with the applicable requirements of 40 CFR Part 63 Subpart CCCCCC - National Emission standards for Hazardous Air Pollutants for Source Category: Gasoline Dispensing Facilities. The applicable requirements of Subpart CCCCCC
include but are not limited to the following. [Regulation 19, §19.304 and 40 CFR §63.11111(a)]

a. As a gasoline dispensing facility (GDF) with a monthly throughput of less than 10,000 gallons, SN-17 must comply with the requirements in 40 CFR §63.11116. [§63.11116(b)]

b. For all purposes of Subpart CCCCCC, monthly throughput is the total volume of gasoline loaded into or dispensed from SN-19. [§63.11111(h)]

c. If the throughput of SN-19 ever exceeds an applicable throughput threshold (i.e., 10,000 or 100,000 gallons/month), then SN-19 will remain subject to requirements for sources above threshold even if throughput later falls below applicable throughput threshold. [§63.11111(i)]

d. The dispensing of gasoline from a fixed gasoline storage tank at a GDF into a portable gasoline tank for the on-site delivery and subsequent dispensing of the gasoline into the fuel tank of a motor vehicle or other gasoline-fueled engine or equipment used within the area source is only subject to §63.11116 of this subpart. [§63.11111(j)]

e. As a new affected source, SN-19 shall comply with the requirements of 40 CFR Part 63 Subpart CCCCCC upon startup. [§63.11113(a)(2)]

f. The permittee must, at all times, operate and maintain SN-19 in a manner consistent with safety and good air pollution control practices for minimizing emissions. Determination of whether such operation and maintenance procedures are being used will be based on information available to the Administrator which may include, but is not limited to, monitoring results, review of operation and maintenance procedures, review of operation and maintenance records, and inspection of the source. [§63.11115(a)]

g. The permittee must not allow gasoline to be handled in a manner that would result in vapor releases to the atmosphere for extended periods of time. Measures to be taken include, but are not limited to: [§63.11116(a)]

i. Minimize gasoline spills;

ii. Clean up spills as expeditiously as practicable;

iii. Cover all open gasoline containers and all gasoline storage tank fill-pipes with a gasketed seal when not in use;

iv. Minimize gasoline sent to open waste collection systems that collect and transport gasoline to reclamtion and recycling devices, such as oil/water separators.

h. The permittee is not required to submit notifications or reports for SN-19 as specified in §63.11125, §63.11126, or subpart A of this part, but you must have
records available within 24 hours of a request by the Administrator to document your gasoline throughput. [§63.11116(b)]

i. Portable gasoline containers that meet the requirements of 40 CFR Part 59, Subpart F, are considered acceptable for compliance with paragraph (a)(3) of §63.11116.

j. The permittee shall keep records as specified in §63.11125(d)(1) and (2). [§63.11125(d)]
 i. Records of the occurrence and duration of each malfunction of operation (i.e., process equipment) or the air pollution control and monitoring equipment.
 ii. Records of actions taken during periods of malfunction to minimize emissions in accordance with §63.11115(a), including corrective actions to restore malfunctioning process and air pollution control and monitoring equipment to its normal or usual manner of operation.
SN-20
Substation Telecom Emergency Generator

Source Description

The emergency generator engine is a 64.1 hp spark ignition internal combustion engine powered by propane. The engine is used to power an electrical generator to provide back-up power to telecommunications systems.

Specific Conditions

85. The permittee shall not exceed the emission rates set forth in the following table. The permittee shall demonstrate compliance with this condition by complying with Specific Conditions #88 through #95. [Reg.19.501 et seq. and 40 C.F.R. § 52 Subpart E]

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>lb/hr</th>
<th>tpy</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM$_{10}$</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>SO$_2$</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>VOC</td>
<td>1.5</td>
<td>0.4</td>
</tr>
<tr>
<td>CO</td>
<td>54.7</td>
<td>13.7</td>
</tr>
<tr>
<td>NO$_x$</td>
<td>1.5</td>
<td>0.4</td>
</tr>
</tbody>
</table>

86. The permittee shall not exceed the emission rates set forth in the following table. The permittee shall demonstrate compliance with this condition by complying with Specific Conditions #88 and #89. [Reg.18.801 and Ark. Code Ann. § 8-4-203 as referenced by Ark. Code Ann. §§ 8-4-304 and 8-4-311]

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>lb/hr</th>
<th>tpy</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Total HAP</td>
<td>0.04</td>
<td>0.01</td>
</tr>
</tbody>
</table>

87. Visible emissions may not exceed the limits specified in the following table of this permit as measured by EPA Reference Method 9. Compliance with this condition shall be demonstrated by compliance with Specific Condition #88. [Reg.18.501 and Ark. Code Ann. § 8-4-203 as referenced by Ark. Code Ann. §§ 8-4-304 and 8-4-311]

<table>
<thead>
<tr>
<th>SN</th>
<th>Limit</th>
<th>Regulatory Citation</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>5%</td>
<td>§18.501</td>
</tr>
</tbody>
</table>
88. The permittee shall only use propane as fuel for the Emergency Generator (SN-20). [Regulation 19, §19.705, A.C.A. §8-4-203 as referenced by A.C.A. §8-4-304 and §8-4-311, and 40 CFR Part 70.6]

89. The permittee shall not operate the emergency generator SN-20 in excess of 500 total hours (emergency and non-emergency) per calendar year in order to demonstrate compliance with the annual emission rate limits. Emergency operation in excess of these hours may be allowable but shall be reported and will be evaluated in accordance with Regulation 19 §19.602 and other applicable regulations. [Regulation 19 §19.705, A.C.A. §8-4-203 as referenced by §8-4-304 and §8-4-311, and 40 CFR 70.6]

90. The permittee shall maintain monthly records to demonstrate compliance with Specific Condition #89. The permittee shall update these records by the fifteenth day of the month following the month to which the records pertain. The calendar year totals and each individual month’s data shall be maintained on-site, made available to Department personnel upon request, and submitted in accordance with General Provision #7. [Regulation 19 §19.705 and 40 CFR Part 52, Subpart E]

91. The permittee shall comply with the emission standards in Table 1 of 40 CFR Part 60 Subpart JJJJ for engine SN-20, over the entire life of the engine, as listed below:

<table>
<thead>
<tr>
<th>Source</th>
<th>NOx g/HP-hr</th>
<th>CO g/HP-hr</th>
</tr>
</thead>
<tbody>
<tr>
<td>SN-20</td>
<td>10</td>
<td>387</td>
</tr>
</tbody>
</table>

[Regulation No. 19 §19.304, 40 CFR Part 60, Subpart JJJJ §60.4233(d), §60.4234]

92. The permittee shall install a non-resettable hour meter upon startup of SN-20. [Regulation No. 19 §19.304, 40 CFR Part 60, Subpart JJJJ §60.4237(c)]

93. The permittee shall demonstrate compliance by purchasing an engine certified according to procedures specified in 40 CFR 60 Subpart JJJJ, for the same model year demonstrating compliance according to one of the methods specified in §60.4243(a). [Regulation No. 19 §19.304, 40 CFR Part 60, Subpart JJJJ §60.4243(b)(1)]

94. The permittee shall operate SN-20 according the requirements in §60.4243(d)(1) through (3) as described below:
 a. There is no time limit on the use of emergency engines in emergency situations.
 b. The permittee may operate the emergency engines for any combination of purposes specified in §60.4243(d)(2)(i) through (iii) for a maximum of 100 hours per calendar year.
 c. The emergency engines may be operated for up to 50 hours per year for non-emergency situations. The 50 hours of operation in non-emergency situations are counted as part of the 100 hours per calendar year for maintenance and testing and emergency demand response. [Regulation No. 19 §19.304, 40 CFR Part 60, Subpart JJJJ, 60.4243(d)]
95. The permittee shall keep record of the following for SN-20:
 a. All notification submitted to comply with this subpart and all documentation
 supporting any notification.
 b. Maintenance conducted on the engines.
 c. Documentation from the manufacturer that the engines are certified to meet the
 required emission standards and information required by other applicable
 regulations.
 [Regulation No. 19 §19.304, 40 CFR Part 60, Subpart JJJJ, 60.4245(a)(1) through (3)]

96. The plant telecom emergency engine (SN-20) is subject to and shall comply with the
 applicable requirements of 40 CFR Part 63 Subpart ZZZZ – National Emission Standards
 for Hazardous Air Pollutants for Stationary Reciprocating Internal Combustion Engines.
 As a new stationary RICE located at an area source of HAP emissions, SN-20 must meet
 the requirements of Subpart ZZZZ by meeting the applicable requirements of 40 CFR
 Part 60 Subpart JJJJ. No further requirements apply for SN-20 under subpart ZZZZ.
 [Regulation No. 19, §19.304 and 40 CFR §63.6590(c)(1)]
SECTION V: COMPLIANCE PLAN AND SCHEDULE

Entergy Arkansas, LLC - Union Power Station will continue to operate in compliance with those identified regulatory provisions. The facility will examine and analyze future regulations that may apply and determine their applicability with any necessary action taken on a timely basis.
SECTION VI: PLANTWIDE CONDITIONS

1. The permittee shall notify the Director in writing within thirty (30) days after commencing construction, completing construction, first placing the equipment and/or facility in operation, and reaching the equipment and/or facility target production rate. [Reg.19.704, 40 C.F.R. § 52 Subpart E, and Ark. Code Ann. § 8-4-203 as referenced by Ark. Code Ann. §§ 8-4-304 and 8-4-311]

2. If the permittee fails to start construction within eighteen months or suspends construction for eighteen months or more, the Director may cancel all or part of this permit. [Reg.19.410(B) and 40 C.F.R. § 52 Subpart E]

3. The permittee must test any equipment scheduled for testing, unless otherwise stated in the Specific Conditions of this permit or by any federally regulated requirements, within the following time frames: (1) new equipment or newly modified equipment within sixty (60) days of achieving the maximum production rate, but no later than 180 days after initial start up of the permitted source or (2) operating equipment according to the time frames set forth by the Department or within 180 days of permit issuance if no date is specified. The permittee must notify the Department of the scheduled date of compliance testing at least fifteen (15) business days in advance of such test. The permittee shall submit the compliance test results to the Department within sixty (60) calendar days after completing the testing. [Reg.19.702 and/or Reg.18.1002 and Ark. Code Ann. § 8-4-203 as referenced by Ark. Code Ann. §§ 8-4-304 and 8-4-311]

4. The permittee must provide:
 a. Sampling ports adequate for applicable test methods;
 b. Safe sampling platforms;
 c. Safe access to sampling platforms; and
 d. Utilities for sampling and testing equipment.
 [Reg.19.702 and/or Reg.18.1002 and Ark. Code Ann. § 8-4-203 as referenced by Ark. Code Ann. §§ 8-4-304 and 8-4-311]

5. The permittee must operate the equipment, control apparatus and emission monitoring equipment within the design limitations. The permittee shall maintain the equipment in good condition at all times. [Reg.19.303 and Ark. Code Ann. § 8-4-203 as referenced by Ark. Code Ann. §§ 8-4-304 and 8-4-311]

6. This permit subsumes and incorporates all previously issued air permits for this facility. [Reg. 26 and Ark. Code Ann. § 8-4-203 as referenced by Ark. Code Ann. §§ 8-4-304 and 8-4-311]

Acid Rain (Title IV)
7. The Director prohibits the permittee to cause any emissions exceeding any allowances the source lawfully holds under Title IV of the Act or the regulations promulgated under the Act. No permit revision is required for increases in emissions allowed by allowances acquired pursuant to the acid rain program, if such increases do not require a permit revision under any other applicable requirement. This permit establishes no limit on the number of allowances held by the permittee. However, the source may not use allowances as a defense for noncompliance with any other applicable requirement of this permit or the Act. The permittee will account for any such allowance according to the procedures established in regulations promulgated under Title IV of the Act. A copy of the facility’s Acid Rain Permit is attached in an appendix to this Title V permit. [Reg.26.701 and 40 C.F.R. § 70.6(a)(4)]

Title VI Provisions

8. The permittee must comply with the standards for labeling of products using ozone-depleting substances. [40 C.F.R. § 82 Subpart E]

 a. All containers containing a class I or class II substance stored or transported, all products containing a class I substance, and all products directly manufactured with a class I substance must bear the required warning statement if it is being introduced to interstate commerce pursuant to § 82.106.
 b. The placement of the required warning statement must comply with the requirements pursuant to § 82.108.
 c. The form of the label bearing the required warning must comply with the requirements pursuant to § 82.110.
 d. No person may modify, remove, or interfere with the required warning statement except as described in § 82.112.

9. The permittee must comply with the standards for recycling and emissions reduction, except as provided for MVACs in Subpart B. [40 C.F.R. § 82 Subpart F]

 a. Persons opening appliances for maintenance, service, repair, or disposal must comply with the required practices pursuant to § 82.156.
 b. Equipment used during the maintenance, service, repair, or disposal of appliances must comply with the standards for recycling and recovery equipment pursuant to § 82.158.
 c. Persons performing maintenance, service repair, or disposal of appliances must be certified by an approved technician certification program pursuant to § 82.161.
 d. Persons disposing of small appliances, MVACs, and MVAC like appliances must comply with record keeping requirements pursuant to § 82.166. (“MVAC like appliance” as defined at § 82.152)
 e. Persons owning commercial or industrial process refrigeration equipment must comply with leak repair requirements pursuant to § 82.156.
f. Owners/operators of appliances normally containing 50 or more pounds of refrigerant must keep records of refrigerant purchased and added to such appliances pursuant to § 82.166.

10. If the permittee manufactures, transforms, destroys, imports, or exports a class I or class II substance, the permittee is subject to all requirements as specified in 40 C.F.R. § 82 Subpart A, Production and Consumption Controls.

11. If the permittee performs a service on motor (fleet) vehicles when this service involves ozone depleting substance refrigerant (or regulated substitute substance) in the motor vehicle air conditioner (MVAC), the permittee is subject to all the applicable requirements as specified in 40 C.F.R. § 82 Subpart B, Servicing of Motor Vehicle Air Conditioners.

The term “motor vehicle” as used in Subpart B does not include a vehicle in which final assembly of the vehicle has not been completed. The term “MVAC” as used in Subpart B does not include the air tight sealed refrigeration system used as refrigerated cargo, or the system used on passenger buses using HCFC 22 refrigerant.

12. The permittee can switch from any ozone depleting substance to any alternative listed in the Significant New Alternatives Program (SNAP) promulgated pursuant to 40 C.F.R. § 82 Subpart G.

CSAPR
Transport Rule (TR) NOX Ozone Season Group 2 Trading Program Requirements

13. The permittee shall comply with the following Cross-State Air Pollution Rule (CSAPR) NOX Ozone Season Group 2 Trading Program Requirements. The unit-specific monitoring provisions are attached to this Title V permit. [40 C.F.R. § 97 Subpart EEEEE and Ark. Code Ann. § 8-4-203 as referenced by Ark. Code Ann. §§ 8-4-304 and 8-4-311]
 a. Designated representative requirements.
 The owners and operators shall comply with the requirement to have a designated representative, and may have an alternate designated representative, in accordance with 40 C.F.R. §§ 97.813 through 97.818.
 b. Emissions monitoring, reporting, and recordkeeping requirements.
 1. The owners and operators, and the designated representative, of each TR NOX Ozone Season Group 2 source and each TR NOX Ozone Season Group 2 unit at the source shall comply with the monitoring, reporting, and recordkeeping requirements of 40 C.F.R. §§ 97.830 (general requirements, including installation, certification, and data accounting, compliance deadlines, reporting data, prohibitions, and long-term cold storage), 97.831 (initial monitoring system certification and recertification procedures), 97.832 (monitoring system out-of-control periods), 97.833
(notifications concerning monitoring), 97.834 (recordkeeping and reporting, including monitoring plans, certification applications, quarterly reports, and compliance certification), and 97.835 (petitions for alternatives to monitoring, recordkeeping, or reporting requirements).

2. The emissions data determined in accordance with 40 C.F.R. §§ 97.830 through 97.835 shall be used to calculate allocations of TR NOX Ozone Season Group 2 allowances under 40 C.F.R. §§ 97.811(a)(2) and (b) and 97.812 and to determine compliance with the TR NOX Ozone Season Group 2 emissions limitation and assurance provisions under paragraph (c) below, provided that, for each monitoring location from which mass emissions are reported, the mass emissions amount used in calculating such allocations and determining such compliance shall be the mass emissions amount for the monitoring location determined in accordance with 40 C.F.R. §§ 97.830 through 97.835 and rounded to the nearest ton, with any fraction of a ton less than 0.50 being deemed to be zero.

c. NOX emissions requirements.

1. TR NOX Ozone Season Group 2 emissions limitation.
 i. As of the allowance transfer deadline for a control period in a given year, the owners and operators of each TR NOX Ozone Season Group 2 source and each TR NOX Ozone Season Group 2 unit at the source shall hold, in the source’s compliance account, TR NOX Ozone Season Group 2 allowances available for deduction for such control period under 40 C.F.R. § 97.824(a) in an amount not less than the tons of total NOX emissions for such control period from all TR NOX Ozone Season Group 2 units at the source.

 ii. If total NOX emissions during a control period in a given year from the TR NOX Ozone Season Group 2 units at a TR NOX Ozone Season Group 2 source are in excess of the TR NOX Ozone Season Group 2 emissions limitation set forth in paragraph (c)(1)(i) above, then:

 A. The owners and operators of the source and each TR NOX Ozone Season Group 2 unit at the source shall hold the TR NOX Ozone Season Group 2 allowances required for deduction under 40 C.F.R. § 97.824(d); and

 B. The owners and operators of the source and each TR NOX Ozone Season Group 2 unit at the source shall pay any fine, penalty, or assessment or comply with any other remedy imposed, for the same violations, under the Clean Air Act, and each ton of such excess emissions and each day of such control period shall constitute a separate violation of 40 C.F.R. § 97 Subpart EEEEE and the Clean Air Act.

2. TR NOX Ozone Season Group 2 assurance provisions.
 i. If total NOX emissions during a control period in a given year from all base TR NOX Ozone Season Group 2 units at base TR NOX
Ozone Season Group 2 sources in the State exceed the State assurance level, then the owners and operators of such sources and units in each group of one or more sources and units having a common designated representative for such control period, where the common designated representative’s share of such NOX emissions during such control period exceeds the common designated representative’s assurance level for the State and such control period, shall hold (in the assurance account established for the owners and operators of such group) TR NOX Ozone Season Group 2 allowances available for deduction for such control period under 40 C.F.R. § 97.825(a) in an amount equal to two times the product (rounded to the nearest whole number), as determined by the Administrator in accordance with 40 C.F.R. § 97.825(b), of multiplying—

A. The quotient of the amount by which the common designated representative’s share of such NOX emissions exceeds the common designated representative’s assurance level divided by the sum of the amounts, determined for all common designated representatives for such sources and units in the State for such control period, by which each common designated representative’s share of such NOX emissions exceeds the respective common designated representative’s assurance level; and

B. The amount by which total NOX emissions from all base TR NOX Ozone Season Group 2 units at base TR NOX Ozone Season Group 2 sources in the State for such control period exceed the State assurance level.

ii. The owners and operators shall hold the TR NOX Ozone Season Group 2 allowances required under paragraph (c)(2)(i) above, as of midnight of November 1 (if it is a business day), or midnight of the first business day thereafter (if November 1 is not a business day), immediately after the year of such control period.

iii. Total NOX emissions from all base TR NOX Ozone Season Group 2 units at base TR NOX Ozone Season Group 2 sources in the State during a control period in a given year exceed the state assurance level if such total NOX emissions exceed the sum, for such control period, of the State NOX Ozone Season Group 2 trading budget under 40 C.F.R. § 97.810(a) and the state’s variability limit under 40 C.F.R. § 97.810(b).

iv. It shall not be a violation of 40 C.F.R. § 97 Subpart EEEEEE or of the Clean Air Act if total NOX emissions from all base TR NOX Ozone Season Group 2 units at base TR NOX Ozone Season Group 2 sources in the State during a control period exceed the State assurance level or if a common designated representative’s share of total NOX emissions from the base TR NOX Ozone Season
Group 2 units at base TR NOX Ozone Season Group 2 sources in the State during a control period exceeds the common designated representative’s assurance level.

v. To the extent the owners and operators fail to hold TR NOX Ozone Season Group 2 allowances for a control period in a given year in accordance with paragraphs (c)(2)(i) through (iii) above,
 A. The owners and operators shall pay any fine, penalty, or assessment or comply with any other remedy imposed under the Clean Air Act; and
 B. Each TR NOX Ozone Season Group 2 allowance that the owners and operators fail to hold for such control period in accordance with paragraphs (c)(2)(i) through (iii) above and each day of such control period shall constitute a separate violation of 40 C.F.R. § 97 Subpart EEEEE and the Clean Air Act.

3. Compliance periods.
 i. A TR NOX Ozone Season Group 2 unit shall be subject to the requirements under paragraph (c)(1) above for the control period starting on the later of May 1, 2017 or the deadline for meeting the unit’s monitor certification requirements under 40 C.F.R. § 97.830(b) and for each control period thereafter.
 ii. A base TR NOX Ozone Season Group 2 unit shall be subject to the requirements under paragraph (c)(2) above for the control period starting on the later of May 1, 2017 or the deadline for meeting the unit’s monitor certification requirements under 40 C.F.R. § 97.830(b) and for each control period thereafter.

4. Vintage of TR NOX Ozone Season Group 2 allowances held for compliance.
 i. A TR NOX Ozone Season Group 2 allowance held for compliance with the requirements under paragraph (c)(1)(i) above for a control period in a given year must be a TR NOX Ozone Season Group 2 allowance that was allocated or auctioned for such control period or a control period in a prior year.
 ii. A TR NOX Ozone Season Group 2 allowance held for compliance with the requirements under paragraphs (c)(1)(ii)(A) and (c)(2)(i) through (iii) above for a control period in a given year must be a TR NOX Ozone Season Group 2 allowance that was allocated or auctioned for a control period in a prior year or the control period in the given year or in the immediately following year.

5. Allowance Management System requirements. Each TR NOX Ozone Season Group 2 allowance shall be held in, deducted from, or transferred into, out of, or between Allowance Management System accounts in accordance with 40 C.F.R. § 97 Subpart EEEEE.
6. Limited authorization. A TR NO\textsubscript{X} Ozone Season Group 2 allowance is a limited authorization to emit one ton of NO\textsubscript{X} during the control period in one year. Such authorization is limited in its use and duration as follows:
 i. Such authorization shall only be used in accordance with the TR NO\textsubscript{X} Ozone Season Group 2 Trading Program; and
 ii. Notwithstanding any other provision of 40 C.F.R. § 97 Subpart EEEEEE, the Administrator has the authority to terminate or limit the use and duration of such authorization to the extent the Administrator determines is necessary or appropriate to implement any provision of the Clean Air Act.

7. Property right. A TR NO\textsubscript{X} Ozone Season Group 2 allowance does not constitute a property right.

d. Title V permit requirements.
 1. No title V permit revision shall be required for any allocation, holding, deduction, or transfer of TR NO\textsubscript{X} Ozone Season Group 2 allowances in accordance with 40 C.F.R. § 97 Subpart EEEEEE.
 2. This permit incorporates the TR emissions monitoring, recordkeeping and reporting requirements pursuant to 40 C.F.R. §§ 97.830 through 97.835, and the requirements for a continuous emission monitoring system (pursuant to 40 C.F.R. § 75 Subparts B and H), an excepted monitoring system (pursuant to 40 C.F.R. § 75, appendices D and E), a low mass emissions excepted monitoring methodology (pursuant to 40 C.F.R. § 75.19), and an alternative monitoring system (pursuant to 40 C.F.R. § 75 Subpart E). Therefore, the Description of TR Monitoring Provisions table for units identified in this permit may be added to, or changed, in this title V permit using minor permit modification procedures in accordance with 40 C.F.R. §§ 97.806(d)(2) and 70.7(e)(2)(i)(B) or 71.7(e)(1)(i)(B).

e. Additional recordkeeping and reporting requirements.
 1. Unless otherwise provided, the owners and operators of each TR NO\textsubscript{X} Ozone Season Group 2 source and each TR NO\textsubscript{X} Ozone Season Group 2 unit at the source shall keep on site at the source each of the following documents (in hardcopy or electronic format) for a period of 5 years from the date the document is created. This period may be extended for cause, at any time before the end of 5 years, in writing by the Administrator.
 i. The certificate of representation under 40 C.F.R. § 97.816 for the designated representative for the source and each TR NO\textsubscript{X} Ozone Season Group 2 unit at the source and all documents that demonstrate the truth of the statements in the certificate of representation; provided that the certificate and documents shall be retained on site at the source beyond such 5-year period until such certificate of representation and documents are superseded because of the submission of a new certificate of representation under 40 C.F.R. § 97.816 changing the designated representative.
 ii. All emissions monitoring information, in accordance with 40 C.F.R. § 97 Subpart EEEEEE.
iii. Copies of all reports, compliance certifications, and other submittals and all records made or required under, or to demonstrate compliance with the requirements of, the TR NO\textsubscript{X} Ozone Season Group 2 Trading Program.

2. The designated representative of a TR NO\textsubscript{X} Ozone Season Group 2 source and each TR NO\textsubscript{X} Ozone Season Group 2 unit at the source shall make all submittals required under the TR NO\textsubscript{X} Ozone Season Group 2 Trading Program, except as provided in 40 C.F.R. § 97.818. This requirement does not change, create an exemption from, or otherwise affect the responsible official submission requirements under a title V operating permit program in 40 C.F.R. §§ 70 and 71.

f. Liability.

1. Any provision of the TR NO\textsubscript{X} Ozone Season Group 2 Trading Program that applies to a TR NO\textsubscript{X} Ozone Season Group 2 source or the designated representative of a TR NO\textsubscript{X} Ozone Season Group 2 source shall also apply to the owners and operators of such source and of the TR NO\textsubscript{X} Ozone Season Group 2 units at the source.

2. Any provision of the TR NO\textsubscript{X} Ozone Season Group 2 Trading Program that applies to a TR NO\textsubscript{X} Ozone Season Group 2 unit or the designated representative of a TR NO\textsubscript{X} Ozone Season Group 2 unit shall also apply to the owners and operators of such unit.

g. Effect on other authorities.

No provision of the TR NO\textsubscript{X} Ozone Season Group 2 Trading Program or exemption under 40 C.F.R. § 97.805 shall be construed as exempting or excluding the owners and operators, and the designated representative, of a TR NO\textsubscript{X} Ozone Season Group 2 source or TR NO\textsubscript{X} Ozone Season Group 2 unit from compliance with any other provision of the applicable, approved state implementation plan, a federally enforceable permit, or the Clean Air Act.
SECTION VII: INSIGNIFICANT ACTIVITIES

The Department deems the following types of activities or emissions as insignificant on the basis of size, emission rate, production rate, or activity in accordance with Group A of the Insignificant Activities list found in Regulation 18 and Regulation 19 Appendix A. Group B insignificant activities may be listed but are not required to be listed in permits. Insignificant activity emission determinations rely upon the information submitted by the permittee in an application dated December 6, 2016 and November 1, 2017. [Reg.26.304 and Ark. Code Ann. § 8-4-203 as referenced by Ark. Code Ann. §§ 8-4-304 and 8-4-311]

<table>
<thead>
<tr>
<th>Description</th>
<th>Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>EDFP Diesel Storage Tank (350 gal)</td>
<td>A-3</td>
</tr>
<tr>
<td>Diesel Storage Tank (500 gal)</td>
<td>A-3</td>
</tr>
<tr>
<td>Used Oil Tank (575 gal)</td>
<td>A-3</td>
</tr>
<tr>
<td>Contractor Diesel Fuel Tank (500 gal)</td>
<td>A-3</td>
</tr>
<tr>
<td>Caustic Storage Tanks</td>
<td>A-4</td>
</tr>
<tr>
<td>Lab. Vents</td>
<td>A-5</td>
</tr>
<tr>
<td>Oil Water Separator</td>
<td>A-13</td>
</tr>
<tr>
<td>Gas Yard Condensate Tank</td>
<td>A-13</td>
</tr>
<tr>
<td>Parts Washer</td>
<td>A-13</td>
</tr>
<tr>
<td>Glove Box Grit Blaster</td>
<td>A-13</td>
</tr>
<tr>
<td>Aerosol Can Puncture Station</td>
<td>A-13</td>
</tr>
<tr>
<td>Maintenance Shop Welding</td>
<td>A-13</td>
</tr>
</tbody>
</table>
1. Any terms or conditions included in this permit which specify and reference Arkansas Pollution Control & Ecology Commission Regulation 18 or the Arkansas Water and Air Pollution Control Act (Ark. Code Ann. § 8-4-101 et seq.) as the sole origin of and authority for the terms or conditions are not required under the Clean Air Act or any of its applicable requirements, and are not federally enforceable under the Clean Air Act. Arkansas Pollution Control & Ecology Commission Regulation 18 was adopted pursuant to the Arkansas Water and Air Pollution Control Act (Ark. Code Ann. § 8-4-101 et seq.). Any terms or conditions included in this permit which specify and reference Arkansas Pollution Control & Ecology Commission Regulation 18 or the Arkansas Water and Air Pollution Control Act (Ark. Code Ann. § 8-4-101 et seq.) as the origin of and authority for the terms or conditions are enforceable under this Arkansas statute. [40 C.F.R. § 70.6(b)(2)]

2. This permit shall be valid for a period of five (5) years beginning on the date this permit becomes effective and ending five (5) years later. [40 C.F.R. § 70.6(a)(2) and Reg.26.701(B)]

3. The permittee must submit a complete application for permit renewal at least six (6) months before permit expiration. Permit expiration terminates the permittee’s right to operate unless the permittee submitted a complete renewal application at least six (6) months before permit expiration. If the permittee submits a complete application, the existing permit will remain in effect until the Department takes final action on the renewal application. The Department will not necessarily notify the permittee when the permit renewal application is due. [Reg.26.406]

4. Where an applicable requirement of the Clean Air Act, as amended, 42 U.S.C. 7401, et seq. (Act) is more stringent than an applicable requirement of regulations promulgated under Title IV of the Act, the permit incorporates both provisions into the permit, and the Director or the Administrator can enforce both provisions. [40 C.F.R. § 70.6(a)(1)(ii) and Reg.26.701(A)(2)]

5. The permittee must maintain the following records of monitoring information as required by this permit.

 a. The date, place as defined in this permit, and time of sampling or measurements;
 b. The date(s) analyses performed;
 c. The company or entity performing the analyses;
 d. The analytical techniques or methods used;
 e. The results of such analyses; and
 f. The operating conditions existing at the time of sampling or measurement.

 [40 C.F.R. § 70.6(a)(3)(ii)(A) and Reg.26.701(C)(2)]
6. The permittee must retain the records of all required monitoring data and support information for at least five (5) years from the date of the monitoring sample, measurement, report, or application. Support information includes all calibration and maintenance records and all original strip chart recordings for continuous monitoring instrumentation, and copies of all reports required by this permit. [40 C.F.R. § 70.6(a)(3)(ii)(B) and Reg.26.701(C)(2)(b)]

7. The permittee must submit reports of all required monitoring every six (6) months. If the permit establishes no other reporting period, the reporting period shall end on the last day of the month six months after the issuance of the initial Title V permit and every six months thereafter. The report is due on the first day of the second month after the end of the reporting period. The first report due after issuance of the initial Title V permit shall contain six months of data and each report thereafter shall contain 12 months of data. The report shall contain data for all monitoring requirements in effect during the reporting period. If a monitoring requirement is not in effect for the entire reporting period, only those months of data in which the monitoring requirement was in effect are required to be reported. The report must clearly identify all instances of deviations from permit requirements. A responsible official as defined in Reg.26.2 must certify all required reports. The permittee will send the reports to the address below:

Arkansas Department of Environmental Quality
Office of Air Quality
ATTN: Compliance Inspector Supervisor
5301 Northshore Drive
North Little Rock, AR 72118-5317

[40 C.F.R. § 70.6(a)(3)(iii)(A) and Reg.26.701(C)(3)(a)]

8. The permittee shall report to the Department all deviations from permit requirements, including those attributable to upset conditions as defined in the permit.

 a. For all upset conditions (as defined in Reg.19.601), the permittee will make an initial report to the Department by the next business day after the discovery of the occurrence. The initial report may be made by telephone and shall include:

 i. The facility name and location;
 ii. The process unit or emission source deviating from the permit limit;
 iii. The permit limit, including the identification of pollutants, from which deviation occurs;
 iv. The date and time the deviation started;
 v. The duration of the deviation;
 vi. The emissions during the deviation;
 vii. The probable cause of such deviations;
 viii. Any corrective actions or preventive measures taken or being taken to prevent such deviations in the future; and
ix. The name of the person submitting the report.

The permittee shall make a full report in writing to the Department within five (5) business days of discovery of the occurrence. The report must include, in addition to the information required by the initial report, a schedule of actions taken or planned to eliminate future occurrences and/or to minimize the amount the permit’s limits were exceeded and to reduce the length of time the limits were exceeded. The permittee may submit a full report in writing (by facsimile, overnight courier, or other means) by the next business day after discovery of the occurrence, and the report will serve as both the initial report and full report.

b. For all deviations, the permittee shall report such events in semi-annual reporting and annual certifications required in this permit. This includes all upset conditions reported in 8a above. The semi-annual report must include all the information as required by the initial and full reports required in 8a.

9. If any provision of the permit or the application thereof to any person or circumstance is held invalid, such invalidity will not affect other provisions or applications hereof which can be given effect without the invalid provision or application, and to this end, provisions of this Regulation are declared to be separable and severable. [40 C.F.R. § 70.6(a)(5), Reg.26.701(E), and Ark. Code Ann. § 8-4-203 as referenced by Ark. Code Ann. §§ 8-4-304 and 8-4-311]

10. The permittee must comply with all conditions of this Part 70 permit. Any permit noncompliance with applicable requirements as defined in Regulation 26 constitutes a violation of the Clean Air Act, as amended, 42 U.S.C. § 7401, et seq. and is grounds for enforcement action; for permit termination, revocation and reissuance, for permit modification; or for denial of a permit renewal application. [40 C.F.R. § 70.6(a)(6)(i) and Reg.26.701(F)(1)]

11. It shall not be a defense for a permittee in an enforcement action that it would have been necessary to halt or reduce the permitted activity to maintain compliance with the conditions of this permit. [40 C.F.R. § 70.6(a)(6)(ii) and Reg.26.701(F)(2)]

12. The Department may modify, revoke, reopen and reissue the permit or terminate the permit for cause. The filing of a request by the permittee for a permit modification, revocation and reissuance, termination, or of a notification of planned changes or anticipated noncompliance does not stay any permit condition. [40 C.F.R. § 70.6(a)(6)(iii) and Reg.26.701(F)(3)]

13. This permit does not convey any property rights of any sort, or any exclusive privilege. [40 C.F.R. § 70.6(a)(6)(iv) and Reg.26.701(F)(4)]
14. The permittee must furnish to the Director, within the time specified by the Director, any information that the Director may request in writing to determine whether cause exists for modifying, revoking and reissuing, or terminating the permit or to determine compliance with the permit. Upon request, the permittee must also furnish to the Director copies of records required by the permit. For information the permittee claims confidentiality, the Department may require the permittee to furnish such records directly to the Director along with a claim of confidentiality. [40 C.F.R. § 70.6(a)(6)(v) and Reg.26.701(F)(5)]

15. The permittee must pay all permit fees in accordance with the procedures established in Regulation 9. [40 C.F.R. § 70.6(a)(7) and Reg.26.701(G)]

16. No permit revision shall be required, under any approved economic incentives, marketable permits, emissions trading and other similar programs or processes for changes provided for elsewhere in this permit. [40 C.F.R. § 70.6(a)(8) and Reg.26.701(H)]

17. If the permit allows different operating scenarios, the permittee shall, contemporaneously with making a change from one operating scenario to another, record in a log at the permitted facility a record of the operational scenario. [40 C.F.R. § 70.6(a)(9)(i) and Reg.26.701(I)(1)]

18. The Administrator and citizens may enforce under the Act all terms and conditions in this permit, including any provisions designed to limit a source’s potential to emit, unless the Department specifically designates terms and conditions of the permit as being federally unenforceable under the Act or under any of its applicable requirements. [40 C.F.R. § 70.6(b) and Reg.26.702(A) and (B)]

19. Any document (including reports) required by this permit pursuant to 40 C.F.R. § 70 must contain a certification by a responsible official as defined in Reg.26.2. [40 C.F.R. § 70.6(c)(1) and Reg.26.703(A)]

20. The permittee must allow an authorized representative of the Department, upon presentation of credentials, to perform the following: [40 C.F.R. § 70.6(c)(2) and Reg.26.703(B)]

 a. Enter upon the permittee’s premises where the permitted source is located or emissions related activity is conducted, or where records must be kept under the conditions of this permit;
 b. Have access to and copy, at reasonable times, any records required under the conditions of this permit;
 c. Inspect at reasonable times any facilities, equipment (including monitoring and air pollution control equipment), practices, or operations regulated or required under this permit; and
 d. As authorized by the Act, sample or monitor at reasonable times substances or parameters for assuring compliance with this permit or applicable requirements.
21. The permittee shall submit a compliance certification with the terms and conditions contained in the permit, including emission limitations, standards, or work practices. The permittee must submit the compliance certification annually. If the permit establishes no other reporting period, the reporting period shall end on the last day of the anniversary month of the initial Title V permit. The report is due on the first day of the second month after the end of the reporting period. The permittee must also submit the compliance certification to the Administrator as well as to the Department. All compliance certifications required by this permit must include the following: [40 C.F.R. § 70.6(c)(5) and Reg.26.703(E)(3)]

 a. The identification of each term or condition of the permit that is the basis of the certification;
 b. The compliance status;
 c. Whether compliance was continuous or intermittent;
 d. The method(s) used for determining the compliance status of the source, currently and over the reporting period established by the monitoring requirements of this permit; and
 e. Such other facts as the Department may require elsewhere in this permit or by § 114(a)(3) and § 504(b) of the Act.

22. Nothing in this permit will alter or affect the following: [Reg.26.704(C)]

 a. The provisions of Section 303 of the Act (emergency orders), including the authority of the Administrator under that section;
 b. The liability of the permittee for any violation of applicable requirements prior to or at the time of permit issuance;
 c. The applicable requirements of the acid rain program, consistent with § 408(a) of the Act; or
 d. The ability of EPA to obtain information from a source pursuant to § 114 of the Act.

23. This permit authorizes only those pollutant emitting activities addressed in this permit. [Ark. Code Ann. § 8-4-203 as referenced by Ark. Code Ann. §§ 8-4-304 and 8-4-311]

24. The permittee may request in writing and at least 15 days in advance of the deadline, an extension to any testing, compliance or other dates in this permit. No such extensions are authorized until the permittee receives written Department approval. The Department may grant such a request, at its discretion in the following circumstances:

 a. Such an extension does not violate a federal requirement;
 b. The permittee demonstrates the need for the extension; and
 c. The permittee documents that all reasonable measures have been taken to meet the current deadline and documents reasons it cannot be met.
25. The permittee may request in writing and at least 30 days in advance, temporary emissions and/or testing that would otherwise exceed an emission rate, throughput requirement, or other limit in this permit. No such activities are authorized until the permittee receives written Department approval. Any such emissions shall be included in the facility’s total emissions and reported as such. The Department may grant such a request, at its discretion under the following conditions:
 a. Such a request does not violate a federal requirement;
 b. Such a request is temporary in nature;
 c. Such a request will not result in a condition of air pollution;
 d. The request contains such information necessary for the Department to evaluate the request, including but not limited to, quantification of such emissions and the date/time such emission will occur;
 e. Such a request will result in increased emissions less than five tons of any individual criteria pollutant, one ton of any single HAP and 2.5 tons of total HAPs; and
 f. The permittee maintains records of the dates and results of such temporary emissions/testing.

26. The permittee may request in writing and at least 30 days in advance, an alternative to the specified monitoring in this permit. No such alternatives are authorized until the permittee receives written Department approval. The Department may grant such a request, at its discretion under the following conditions:
 a. The request does not violate a federal requirement;
 b. The request provides an equivalent or greater degree of actual monitoring to the current requirements; and
 c. Any such request, if approved, is incorporated in the next permit modification application by the permittee.

27. Any credible evidence based on sampling, monitoring, and reporting may be used to determine violations of applicable emission limitations. [Reg.18.1001, Reg.19.701, Ark. Code Ann. § 8-4-203 as referenced by Ark. Code Ann. §§ 8-4-304 and 8-4-311, and 40 C.F.R. § 52 Subpart E]
Appendix A
NSPS Subpart Da
§60.40Da Applicability and designation of affected facility.

(a) Except as specified in paragraph (e) of this section, the affected facility to which this subpart applies is each electric utility steam generating unit:

(1) That is capable of combusting more than 73 megawatts (MW) (250 million British thermal units per hour (MMBtu/hr)) heat input of fossil fuel (either alone or in combination with any other fuel); and

(2) For which construction, modification, or reconstruction is commenced after September 18, 1978.

(b) An IGCC electric utility steam generating unit (both the stationary combustion turbine and any associated duct burners) is subject to this part and is not subject to subpart GG or KKKK of this part if both of the conditions specified in paragraphs (b) (1) and (2) of this section are met.

(1) The IGCC electric utility steam generating unit is capable of combusting more than 73 MW (250 MMBtu/h) heat input of fossil fuel (either alone or in combination with any other fuel) in the combustion turbine engine and associated heat recovery steam generator; and

(2) The IGCC electric utility steam generating unit commenced construction, modification, or reconstruction after February 28, 2005.

(c) Any change to an existing fossil-fuel-fired steam generating unit to accommodate the use of combustible materials, other than fossil fuels, shall not bring that unit under the applicability of this subpart.

(d) Any change to an existing steam generating unit originally designed to fire gaseous or liquid fossil fuels, to accommodate the use of any other fuel (fossil or nonfossil) shall not bring that unit under the applicability of this subpart.

(e) Applicability of this subpart to an electric utility combined cycle gas turbine other than an IGCC electric utility steam generating unit is as specified in paragraphs (e)(1) through (3) of this section.
(1) Affected facilities (i.e., heat recovery steam generators used with duct burners) associated with a stationary combustion turbine that are capable of combusting more than 73 MW (250 MMBtu/h) heat input of fossil fuel are subject to this subpart except in cases when the affected facility (i.e., heat recovery steam generator) meets the applicability requirements of and is subject to subpart KKKK of this part.

(2) For heat recovery steam generators used with duct burners subject to this subpart, only emissions resulting from the combustion of fuels in the steam generating unit (i.e., duct burners) are subject to the standards under this subpart. (The emissions resulting from the combustion of fuels in the stationary combustion turbine engine are subject to subpart GG or KKKK, as applicable, of this part.)

(3) Any affected facility that meets the applicability requirements and is subject to subpart Eb or subpart CCCC of this part is not subject to the emission standards under subpart Da.

§60.41Da Definitions.

As used in this subpart, all terms not defined herein shall have the meaning given them in the Act and in subpart A of this part.

Affirmative defense means, in the context of an enforcement proceeding, a response or defense put forward by a defendant, regarding which the defendant has the burden of proof, and the merits of which are independently and objectively evaluated in a judicial or administrative proceeding.

Anthracite means coal that is classified as anthracite according to the American Society of Testing and Materials in ASTM D388 (incorporated by reference, see §60.17).

Available system capacity means the capacity determined by subtracting the system load and the system emergency reserves from the net system capacity.

Biomass means plant materials and animal waste.

Bituminous coal means coal that is classified as bituminous according to the American Society of Testing and Materials in ASTM D388 (incorporated by reference, see §60.17).

Boiler operating day for units constructed, reconstructed, or modified before March 1, 2005, means a 24-hour period during which fossil fuel is combusted in a steam-generating unit for the entire 24 hours. For units constructed, reconstructed, or modified after February 28, 2005, boiler operating day means a 24-hour period between 12 midnight and the following midnight during which any fuel is combusted at any time in the steam-generating unit. It is not necessary for fuel to be combusted the entire 24-hour period.

Coal means all solid fuels classified as anthracite, bituminous, subbituminous, or lignite by the American Society of Testing and Materials in ASTM D388 (incorporated by reference, see §60.17) and coal refuse. Synthetic fuels derived from coal for the purpose of creating useful heat, including but not limited to solvent-refined coal, gasified coal, coal-oil mixtures, and coal-water mixtures are included in this definition for the purposes of this subpart.

Coal-fired electric utility steam generating unit means an electric utility steam generating unit that burns coal, coal refuse, or a synthetic gas derived from coal either exclusively, in any combination together, or in any combination with other fuels in any amount.

Coal refuse means waste products of coal mining, physical coal cleaning, and coal preparation operations (e.g. culm, gob, etc.) containing coal, matrix material, clay, and other organic and inorganic material.

Combined cycle gas turbine means a stationary turbine combustion system where heat from the turbine exhaust gases is recovered by a steam generating unit.

Combined heat and power, also known as “cogeneration,” means a steam-generating unit that simultaneously produces both electric (and mechanical) and useful thermal energy from the same primary energy source.

Duct burner means a device that combusts fuel and that is placed in the exhaust duct from another source, such as a stationary gas turbine, internal combustion engine, kiln, etc., to allow the firing of additional fuel to heat the exhaust gases before the exhaust gases enter a heat recovery steam generating unit.
Electric utility combined cycle gas turbine means any combined cycle gas turbine used for electric generation that is constructed for the purpose of supplying more than one-third of its potential electric output capacity and more than 25 MW net-electrical output to any utility power distribution system for sale. Any steam distribution system that is constructed for the purpose of providing steam to a steam electric generator that would produce electrical power for sale is also considered in determining the electrical energy output capacity of the affected facility.

Electric utility steam-generating unit means any steam electric generating unit that is constructed for the purpose of supplying more than one-third of its potential electric output capacity and more than 25 MW net-electrical output to any utility power distribution system for sale. Also, any steam supplied to a steam distribution system for the purpose of providing steam to a steam-electric generator that would produce electrical energy for sale is considered in determining the electrical energy output capacity of the affected facility.

Electrostatic precipitator or ESP means an add-on air pollution control device used to capture particulate matter (PM) by charging the particles using an electrostatic field, collecting the particles using a grounded collecting surface, and transporting the particles into a hopper.

Emission limitation means any emissions limit or operating limit.

Federally enforceable means all limitations and conditions that are enforceable by the Administrator, including the requirements of 40 CFR parts 60 and 61, requirements within any applicable State implementation plan, and any permit requirements established under 40 CFR 52.21 or under 40 CFR 51.18 and 51.24.

Fossil fuel means natural gas, petroleum, coal, and any form of solid, liquid, or gaseous fuel derived from such material for the purpose of creating useful heat.

Gaseous fuel means any fuel that is present as a gas at standard conditions and includes, but is not limited to, natural gas, refinery fuel gas, process gas, coke-oven gas, synthetic gas, and gasified coal.

Gross energy output means:

(1) For facilities constructed, reconstructed, or modified before May 4, 2011, the gross electrical or mechanical output from the affected facility plus 75 percent of the useful thermal output measured relative to ISO conditions that is not used to generate additional electrical or mechanical output or to enhance the performance of the unit (i.e., steam delivered to an industrial process);

(2) For facilities constructed, reconstructed, or modified after May 3, 2011, the gross electrical or mechanical output from the affected facility minus any electricity used to power the feedwater pumps and any associated gas compressors (air separation unit main compressor, oxygen compressor, and nitrogen compressor) plus 75 percent of the useful thermal output measured relative to ISO conditions that is not used to generate additional electrical or mechanical output or to enhance the performance of the unit (i.e., steam delivered to an industrial process);

(3) For combined heat and power facilities constructed, reconstructed, or modified after May 3, 2011, the gross electrical or mechanical output from the affected facility divided by 0.95 minus any electricity used to power the feedwater pumps and any associated gas compressors (air separation unit main compressor, oxygen compressor, and nitrogen compressor) plus 75 percent of the useful thermal output measured relative to ISO conditions that is not used to generate additional electrical or mechanical output or to enhance the performance of the unit (i.e., steam delivered to an industrial process);

(4) For a IGCC electric utility generating unit that coproduces chemicals constructed, reconstructed, or modified after May 3, 2011, the gross useful work performed is the gross electrical or mechanical output from the unit minus electricity used to power the feedwater pumps and any associated gas compressors (air separation unit main compressor, oxygen compressor, and nitrogen compressor) that are associated with power production plus 75 percent of the useful thermal output measured relative to ISO conditions that is not used to generate additional electrical or mechanical output or to enhance the performance of the unit (i.e., steam delivered to an industrial process). Auxiliary loads that are associated with power production are determined based on the energy in the coproduced chemicals compared to the energy of the syngas combusted in combustion turbine engine and associated duct burners.

24-hour period means the period of time between 12:01 a.m. and 12:00 midnight.

Integrated gasification combined cycle electric utility steam generating unit or IGCC electric utility steam generating unit means an electric utility combined cycle gas turbine that is designed to burn fuels containing 50 percent (by heat input) or more solid-derived fuel not meeting the definition of natural gas. The Administrator may waive the 50 percent solid-derived fuel requirement during periods of the gasification system construction, startup and commissioning, shutdown, or repair. No solid fuel is directly burned in the unit during operation.

ISO conditions means a temperature of 288 Kelvin, a relative humidity of 60 percent, and a pressure of 101.3 kilopascals.
Lignite means coal that is classified as lignite A or B according to the American Society of Testing and Materials in ASTM D388 (incorporated by reference, see §60.17).

Natural gas means a fluid mixture of hydrocarbons (e.g., methane, ethane, or propane), composed of at least 70 percent methane by volume or that has a gross calorific value between 35 and 41 megajoules (MJ) per dry standard cubic meter (950 and 1,100 Btu per dry standard cubic foot), that maintains a gaseous state under ISO conditions. In addition, natural gas contains 20.0 grains or less of total sulfur per 100 standard cubic feet. Finally, natural gas does not include the following gaseous fuels: landfill gas, digester gas, refinery gas, sour gas, blast furnace gas, coal-derived gas, producer gas, coke oven gas, or any gaseous fuel produced in a process which might result in highly variable sulfur content or heating value.

Neighboring company means any one of those electric utility companies with one or more electric power interconnections to the principal company and which have geographically adjoining service areas.

Net-electric output means the gross electric sales to the utility power distribution system minus purchased power on a calendar year basis.

Net energy output means the gross energy output minus the parasitic load associated with power production. Parasitic load includes, but is not limited to, the power required to operate the equipment used for fuel delivery systems, air pollution control systems, wastewater treatment systems, ash handling and disposal systems, and other controls (i.e., pumps, fans, compressors, motors, instrumentation, and other ancillary equipment required to operate the affected facility).

Noncontinental area means the State of Hawaii, the Virgin Islands, Guam, American Samoa, the Commonwealth of Puerto Rico, or the Northern Mariana Islands.

Out-of-control period means any period beginning with the quadrant corresponding to the completion of a daily calibration error, linearity check, or quality assurance audit that indicates that the instrument is not measuring and recording within the applicable performance specifications and ending with the quadrant corresponding to the completion of an additional calibration error, linearity check, or quality assurance audit following corrective action that demonstrates that the instrument is measuring and recording within the applicable performance specifications.

Petroleum for facilities constructed, reconstructed, or modified before May 4, 2011, means crude oil or a fuel derived from crude oil, including, but not limited to, distillate oil, and residual oil. For units constructed, reconstructed, or modified after May 3, 2011, petroleum means crude oil or a fuel derived from crude oil, including, but not limited to, distillate oil, residual oil, and petroleum coke.

Petroleum coke, also known as “pet coke,” means a carbonization product of high-boiling hydrocarbon fractions obtained in petroleum processing (heavy residues). Petroleum coke is typically derived from oil refinery coker units or other cracking processes.

Potential combustion concentration means the theoretical emissions (nanograms per joule (ng/J), lb/MMBtu heat input) that would result from combustion of a fuel in an uncleaned state without emission control systems. For sulfur dioxide (SO₂) the potential combustion concentration is determined under §60.50Da(c).

Potential electrical output capacity means 33 percent of the maximum design heat input capacity of the steam generating unit, divided by 3,413 Btu/KWh, divided by 1,000 kWh/MWh, and multiplied by 8,760 hr/yr (e.g., a steam generating unit with a 100 MW (340 MMBtu/hr) fossil-fuel heat input capacity would have a 289,080 MWh 12 month potential electrical output capacity). For electric utility combined cycle gas turbines the potential electrical output capacity is determined on the basis of the fossil-fuel firing capacity of the steam generator exclusive of the heat input and electrical power contribution by the gas turbine.

Resource recovery unit means a facility that combusts more than 75 percent non-fossil fuel on a quarterly (calendar) heat input basis.

Solid-derived fuel means any solid, liquid, or gaseous fuel derived from solid fuel for the purpose of creating useful heat and includes, but is not limited to, solvent refined coal, liquified coal, synthetic gas, gasified coal, gasified petroleum coke, gasified biomass, and gasified tire derived fuel.

Steam generating unit for facilities constructed, reconstructed, or modified before May 4, 2011, means any furnace, boiler, or other device used for combusting fuel for the purpose of producing steam (including fossil-fuel-fired steam generators associated with combined cycle gas turbines; nuclear steam generators are not included). For units constructed, reconstructed, or modified after May 3, 2011, steam generating unit means any furnace, boiler, or other device used for combusting fuel for the purpose of producing steam (including fossil-fuel-fired steam generators associated with combined cycle gas turbines; nuclear steam generators are not included) plus any integrated combustion turbines and fuel cells.
Subbituminous coal means coal that is classified as subbituminous A, B, or C according to the American Society of Testing and Materials in ASTM D388 (incorporated by reference, see §60.17).

Wet flue gas desulfurization technology or wet FGD means a SO₂ control system that is located downstream of the steam generating unit and removes sulfur oxides from the combustion gases of the steam generating unit by contacting the combustion gases with an alkaline slurry or solution and forming a liquid material. This definition applies to devices where the aqueous liquid material product of this contact is subsequently converted to other forms. Alkaline reagents used in wet FGD technology include, but are not limited to, lime, limestone, and sodium.

§60.42Da Standards for particulate matter (PM).

(a) Except as provided in paragraph (f) of this section, on and after the date on which the initial performance test is completed or required to be completed under §60.8, whichever date comes first, an owner or operator of an affected facility shall not cause to be discharged into the atmosphere from any affected facility for which construction, reconstruction, or modification commenced before March 1, 2005, any gases that contain PM in excess of 13 ng/J (0.03 lb/MMBtu) heat input.

(b) Except as provided in paragraphs (b)(1) and (b)(2) of this section, on and after the date the initial PM performance test is completed or required to be completed under §60.8, whichever date comes first, an owner or operator of an affected facility shall not cause to be discharged into the atmosphere any gases which exhibit greater than 20 percent opacity (6-minute average), except for one 6-minute period per hour of not more than 27 percent opacity.

(1) An owner or operator of an affected facility that elects to install, calibrate, maintain, and operate a continuous emissions monitoring system (CEMS) for measuring PM emissions according to the requirements of this subpart is exempt from the opacity standard specified in this paragraph (b) of this section.

(2) An owner or operator of an affected facility that combusts only natural gas and/or synthetic natural gas that chemically meets the definition of natural gas is exempt from the opacity standard specified in paragraph (b) of this section.

(c) Except as provided in paragraphs (d) and (f) of this section, on and after the date on which the initial performance test is completed or required to be completed under §60.8, whichever date comes first, no owner or operator of an affected facility that commenced construction, reconstruction, or modification after February 28, 2005, but before May 4, 2011, shall cause to be discharged into the atmosphere from that affected facility any gases that contain PM in excess of either:

(1) 18 ng/J (0.14 lb/MWh) gross energy output; or

(2) 6.4 ng/J (0.015 lb/MMBtu) heat input derived from the combustion of solid, liquid, or gaseous fuel.

(d) As an alternative to meeting the requirements of paragraph (c) of this section, the owner or operator of an affected facility for which construction, reconstruction, or modification commenced after February 28, 2005, but before May 4, 2011, may elect to meet the requirements of this paragraph. On and after the date on which the initial performance test is completed or required to be completed under §60.8, whichever date comes first, no owner or operator of an affected facility shall cause to be discharged into the atmosphere from that affected facility any gases that contain PM in excess of:

(1) 13 ng/J (0.030 lb/MMBtu) heat input derived from the combustion of solid, liquid, or gaseous fuel, and

(2) For an affected facility that commenced construction or reconstruction, 0.1 percent of the combustion concentration determined according to the procedure in §60.48Da(o)(5) (99.9 percent reduction) whencombusting solid, liquid, or gaseous fuel, or

(3) For an affected facility that commenced modification, 0.2 percent of the combustion concentration determined according to the procedure in §60.48Da(o)(5) (99.8 percent reduction) whencombusting solid, liquid, or gaseous fuel.

(e) Except as provided in paragraph (f) of this section, the owner or operator of an affected facility that commenced construction, reconstruction, or modification commenced after May 3, 2011, shall meet the requirements specified in paragraphs (e)(1) and (2) of this section.

(1) On and after the date on which the initial performance test is completed or required to be completed under §60.8, whichever date comes first, the owner or operator shall not cause to be discharged into the atmosphere from that affected facility any gases that contain PM in excess of the applicable emissions limit specified in paragraphs (e)(1)(i) or (ii) of this section.
(i) For an affected facility which commenced construction or reconstruction:

(A) 11 ng/J (0.090 lb/MWh) gross energy output; or

(B) 12 ng/J (0.097 lb/MWh) net energy output.

(ii) For an affected facility which commenced modification, the emission limits specified in paragraphs (c) or (d) of this section.

2. During startup periods and shutdown periods, owners or operators of facilities subject to subpart UUUUUU of part 63 of this chapter shall meet the work practice standards specified in Table 3 to subpart UUUUUU of part 63 and use the relevant definitions in §63.10042, and owners or operators of facilities subject to subpart DDDDD of part 63 shall meet the work practice standards specified in Table 3 to subpart DDDDD of part 63 and use the relevant definition used in §63.7575.

(f) An owner or operator of an affected facility that meets the conditions in either paragraphs (f)(1) or (2) of this section is exempt from the PM emissions limits in this section.

(1) The affected facility combusts only gaseous or liquid fuels (excluding residual oil) with potential SO₂ emissions rates of 26 ng/J (0.060 lb/ MMBtu) or less, and that does not use a post-combustion technology to reduce emissions of SO₂ or PM.

(2) The affected facility is operated under a PM commercial demonstration permit issued by the Administrator according to the provisions of §60.47Da.

§60.43Da Standards for sulfur dioxide (SO₂).

(a) On and after the date on which the initial performance test is completed or required to be completed under §60.8, whichever date comes first, no owner or operator subject to the provisions of this subpart shall cause to be discharged into the atmosphere from any affected facility which combusts solid fuel or solid-derived fuel and for which construction, reconstruction, or modification commenced before or on February 28, 2005, except as provided under paragraphs (c), (d), (f) or (h) of this section, any gases that contain SO₂ in excess of:

(1) 520 ng/J (1.20 lb/MMBtu) heat input and 10 percent of the potential combustion concentration (90 percent reduction);

(2) 30 percent of the potential combustion concentration (70 percent reduction), when emissions are less than 260 ng/J (0.60 lb/MMBtu) heat input;

(3) 180 ng/J (1.4 lb/MWh) gross energy output; or

(4) 65 ng/J (0.15 lb/MMBtu) heat input.

(b) On and after the date on which the initial performance test is completed or required to be completed under §60.8, whichever date comes first, no owner or operator subject to the provisions of this subpart shall cause to be discharged into the atmosphere from any affected facility which combusts liquid or gaseous fuels (except for liquid or gaseous fuels derived from solid fuels and as provided under paragraphs (e) or (h) of this section) and for which construction, reconstruction, or modification commenced before or on February 28, 2005, any gases that contain SO₂ in excess of:

(1) 340 ng/J (0.80 lb/MMBtu) heat input and 10 percent of the potential combustion concentration (90 percent reduction); or

(2) 100 percent of the potential combustion concentration (zero percent reduction) when emissions are less than 86 ng/J (0.20 lb/MMBtu) heat input.

(c) On and after the date on which the initial performance test is completed or required to be completed under §60.8, whichever date comes first, no owner or operator subject to the provisions of this subpart shall cause to be discharged into the atmosphere from any affected facility which combusts solid solvent refined coal (SRC-I) any gases that contain SO₂ in excess of 520 ng/J (1.20 lb/MMBtu) heat input and 15 percent of the potential combustion concentration (85 percent reduction) except as provided under paragraph (f) of this section; compliance with the emission limitation is determined on a 30-day rolling average basis and compliance with the percent reduction requirement is determined on a 24-hour basis.

(d) Sulfur dioxide emissions are limited to 520 ng/J (1.20 lb/MMBtu) heat input from any affected facility which:

(1) Combusts 100 percent anthracite;
(2) Is classified as a resource recovery unit; or

(3) Is located in a noncontinental area and combusts solid fuel or solid-derived fuel.

(e) Sulfur dioxide emissions are limited to 340 ng/J (0.80 lb/MBtu) heat input from any affected facility which is located in a noncontinental area and combusts liquid or gaseous fuels (excluding solid-derived fuels).

(f) The SO\(_2\) standards under this section do not apply to an owner or operator of an affected facility that is operated under an SO\(_2\) commercial demonstration permit issued by the Administrator in accordance with the provisions of §60.47Da.

(g) Compliance with the emission limitation and percent reduction requirements under this section are both determined on a 30-day rolling average basis except as provided under paragraph (c) of this section.

(h) When different fuels are combusted simultaneously, the applicable standard is determined by proration using the following formula:

\[
E_s = \frac{(240x + 320y)}{100} \quad \text{and} \quad \%P_s = 10
\]

(1) If emissions of SO\(_2\) to the atmosphere are greater than 260 ng/J (0.60 lb/MBtu) heat input

(2) If emissions of SO\(_2\) to the atmosphere are equal to or less than 260 ng/J (0.60 lb/MBtu) heat input:

\[
E_s = \frac{(240x + 320y)}{100} \quad \text{and} \quad \%P_s = \frac{(240x + 320y)}{100}
\]

Where:

\(E_s\) = Prorated SO\(_2\) emission limit (ng/J heat input);

\(\%P_s\) = Percentage of potential SO\(_2\) emission allowed;

\(x\) = Percentage of total heat input derived from the combustion of liquid or gaseous fuels (excluding solid-derived fuels); and

\(y\) = Percentage of total heat input derived from the combustion of solid fuel (including solid-derived fuels).

(i) Except as provided in paragraphs (j) and (k) of this section, on and after the date on which the initial performance test is completed or required to be completed under §60.8, whichever date comes first, no owner or operator of an affected facility for which construction, reconstruction, or modification commenced after February 28, 2005, but before May 4, 2011, shall cause to be discharged into the atmosphere from that affected facility, any gases that contain SO\(_2\) in excess of the applicable emissions limit specified in paragraphs (i)(1) through (3) of this section.

(1) For an affected facility which commenced construction, any gases that contain SO\(_2\) in excess of either:

(i) 180 ng/J (1.4 lb/MWh) gross energy output; or

(ii) 5 percent of the potential combustion concentration (95 percent reduction).

(2) For an affected facility which commenced reconstruction, any gases that contain SO\(_2\) in excess of either:

(i) 180 ng/J (1.4 lb/MWh) gross energy output;

(ii) 65 ng/J (0.15 lb/MBtu) heat input; or

(iii) 5 percent of the potential combustion concentration (95 percent reduction).

(3) For an affected facility which commenced modification, any gases that contain SO\(_2\) in excess of either:

(i) 180 ng/J (1.4 lb/MWh) gross energy output;

(ii) 65 ng/J (0.15 lb/MBtu) heat input; or

(iii) 10 percent of the potential combustion concentration (90 percent reduction).
(j) On and after the date on which the initial performance test is completed or required to be completed under §60.8, whichever date comes first, no owner or operator of an affected facility that commenced construction, reconstruction, or modification commenced after February 28, 2005, and that burns 75 percent or more (by heat input) coal refuse on a 12-month rolling average basis, shall caused to be discharged into the atmosphere from that affected facility any gases that contain SO\textsubscript{2} in excess of the applicable emission limitation specified in paragraphs (j)(1) through (3) of this section.

(1) For an affected facility for which construction commenced after February 28, 2005, any gases that contain SO\textsubscript{2} in excess of either:

(i) 180 ng/J (1.4 lb/MWh) gross energy output on a 30-day rolling average basis; or

(ii) 6 percent of the potential combustion concentration (94 percent reduction) on a 30-day rolling average basis.

(2) For an affected facility for which reconstruction commenced after February 28, 2005, any gases that contain SO\textsubscript{2} in excess of either:

(i) 180 ng/J (1.4 lb/MWh) gross energy output on a 30-day rolling average basis;

(ii) 65 ng/J (0.15 lb/MMBtu) heat input on a 30-day rolling average basis; or

(iii) 6 percent of the potential combustion concentration (94 percent reduction) on a 30-day rolling average basis.

(3) For an affected facility for which modification commenced after February 28, 2005, any gases that contain SO\textsubscript{2} in excess of either:

(i) 180 ng/J (1.4 lb/MWh) gross energy output on a 30-day rolling average basis;

(ii) 65 ng/J (0.15 lb/MMBtu) heat input on a 30-day rolling average basis; or

(iii) 10 percent of the potential combustion concentration (90 percent reduction) on a 30-day rolling average basis.

(k) On and after the date on which the initial performance test is completed or required to be completed under §60.8, whichever date comes first, no owner or operator of an affected facility located in a noncontinental area for which construction, reconstruction, or modification commenced after February 28, 2005, but before May 4, 2011, shall cause to be discharged into the atmosphere from that affected facility any gases that contain SO\textsubscript{2} in excess of the applicable emissions limit specified in paragraphs (k)(1) and (2) of this section.

(1) For an affected facility that burns solid or solid-derived fuel, the owner or operator shall not cause to be discharged into the atmosphere any gases that contain SO\textsubscript{2} in excess of 520 ng/J (1.2 lb/MMBtu) heat input.

(2) For an affected facility that burns other than solid or solid-derived fuel, the owner or operator shall not cause to be discharged into the atmosphere any gases that contain SO\textsubscript{2} in excess of 230 ng/J (0.54 lb/MMBtu) heat input.

(l) Except as provided in paragraphs (j) and (m) of this section, on and after the date on which the initial performance test is completed or required to be completed under §60.8, whichever date comes first, no owner or operator of an affected facility for which construction, reconstruction, or modification commenced after May 3, 2011, shall cause to be discharged into the atmosphere from that affected facility any gases that contain SO\textsubscript{2} in excess of the applicable emissions limit specified in paragraphs (l)(1) and (2) of this section.

(1) For an affected facility which commenced construction or reconstruction, any gases that contain SO\textsubscript{2} in excess of either:

(i) 130 ng/J (1.0 lb/MWh) gross energy output; or

(ii) 140 ng/J (1.2 lb/MWh) net energy output; or

(iii) 3 percent of the potential combustion concentration (97 percent reduction).

(2) For an affected facility which commenced modification, any gases that contain SO\textsubscript{2} in excess of either:

(i) 180 ng/J (1.4 lb/MWh) gross energy output; or

(ii) 10 percent of the potential combustion concentration (90 percent reduction).
(m) On and after the date on which the initial performance test is completed or required to be completed under §60.8, whichever date comes first, no owner or operator of an affected facility located in a noncontinental area for which construction, reconstruction, or modification commenced after May 3, 2011, shall cause to be discharged into the atmosphere from that affected facility any gases that contain SO\(_2\) in excess of the applicable emissions limit specified in paragraphs (m)(1) and (2) of this section.

(1) For an affected facility that burns solid or solid-derived fuel, the owner or operator shall not cause to be discharged into the atmosphere any gases that contain SO\(_2\) in excess of 520 ng/J (1.2 lb/MMBtu) heat input.

(2) For an affected facility that burns other than solid or solid-derived fuel, the owner or operator shall not cause to be discharged into the atmosphere any gases that contain SO\(_2\) in excess of 230 ng/J (0.54 lb/MMBtu) heat input.

§60.44Da Standards for nitrogen oxides (NO\(_X\)).

(a) Except as provided in paragraph (h) of this section, on and after the date on which the initial performance test is completed or required to be completed under §60.8, whichever date comes first, no owner or operator subject to the provisions of this subpart shall cause to be discharged into the atmosphere from any affected facility for which construction, reconstruction, or modification commenced before July 10, 1997 any gases that contain NO\(_X\) (expressed as NO\(_2\)) in excess of the applicable emissions limit in paragraphs (a)(1) and (2) of this section.

(1) The owner or operator shall not cause to be discharged into the atmosphere any gases that contain NO\(_X\) in excess of the emissions limit listed in the following table as applicable to the fuel type combusted and as determined on a 30-boiler operating day rolling average basis.

<table>
<thead>
<tr>
<th>Fuel type</th>
<th>Emission limit for heat input</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ng/J</td>
</tr>
<tr>
<td>Gaseous fuels:</td>
<td></td>
</tr>
<tr>
<td>Coal-derived fuels</td>
<td>210</td>
</tr>
<tr>
<td>All other fuels</td>
<td>86</td>
</tr>
<tr>
<td>Liquid fuels:</td>
<td></td>
</tr>
<tr>
<td>Coal-derived fuels</td>
<td>210</td>
</tr>
<tr>
<td>Shale oil</td>
<td>210</td>
</tr>
<tr>
<td>All other fuels</td>
<td>130</td>
</tr>
<tr>
<td>Solid fuels:</td>
<td></td>
</tr>
<tr>
<td>Coal-derived fuels</td>
<td>210</td>
</tr>
<tr>
<td>Any fuel containing more than 25%, by weight, coal refuse</td>
<td>1</td>
</tr>
<tr>
<td>Any fuel containing more than 25%, by weight, lignite if the lignite is mined in North Dakota, South Dakota, or Montana, and is combusted in a slag tap furnace(^2)</td>
<td>340</td>
</tr>
<tr>
<td>Any fuel containing more than 25%, by weight, lignite not subject to the 340 ng/J heat input emission limit(^2)</td>
<td>260</td>
</tr>
<tr>
<td>Subbituminous coal</td>
<td>210</td>
</tr>
<tr>
<td>Bituminous coal</td>
<td>260</td>
</tr>
<tr>
<td>Anthracite coal</td>
<td>260</td>
</tr>
<tr>
<td>All other fuels</td>
<td>260</td>
</tr>
</tbody>
</table>

\(^1\) Exempt from NO\(_X\) standards and NO\(_X\) monitoring requirements.

\(^2\) Any fuel containing less than 25%, by weight, lignite is not prorated but its percentage is added to the percentage of the predominant fuel.

(2) When two or more fuels are combusted simultaneously in an affected facility, the applicable emissions limit (E\(_n\)) is determined by proration using the following formula:

\[
E_n = \frac{0.6w + 130x + 210y + 260z + 340v}{166}
\]

View or download PDF

Where:

E\(_n\) = Applicable NO\(_X\) emissions limit when multiple fuels are combusted simultaneously (ng/J heat input);

w = Percentage of total heat input derived from the combustion of fuels subject to the 86 ng/J heat input standard;

x = Percentage of total heat input derived from the combustion of fuels subject to the 130 ng/J heat input standard;
y = Percentage of total heat input derived from the combustion of fuels subject to the 210 ng/J heat input standard;
z = Percentage of total heat input derived from the combustion of fuels subject to the 260 ng/J heat input standard; and
v = Percentage of total heat input delivered from the combustion of fuels subject to the 340 ng/J heat input standard.

(b)-(c) [Reserved]

(d) Except as provided in paragraph (h) of this section, on and after the date on which the initial performance test is completed or required to be completed under §60.8, whichever date comes first, no owner or operator of an affected facility that commenced construction, reconstruction, or modification after July 9, 1997, but before March 1, 2005, shall cause to be discharged into the atmosphere from that affected facility any gases that contain NO\textsubscript{X} (expressed as NO\textsubscript{2}) in excess of the applicable emissions limit specified in paragraphs (d)(1) and (2) of this section as determined on a 30-boiler operating day rolling average basis.

(1) For an affected facility which commenced construction, any gases that contain NO\textsubscript{X} in excess of 200 ng/J (1.6 lb/MWh) gross energy output.

(2) For an affected facility which commenced reconstruction, any gases that contain NO\textsubscript{X} in excess of 65 ng/J (0.15 lb/MMBtu) heat input.

(e) Except as provided in paragraphs (f) and (h) of this section, on and after the date on which the initial performance test is completed or required to be completed under §60.8, whichever date comes first, no owner or operator of an affected facility that commenced construction, reconstruction, or modification after February 28, 2005 but before May 4, 2011, shall cause to be discharged into the atmosphere from that affected facility any gases that contain NO\textsubscript{X} (expressed as NO\textsubscript{2}) in excess of the applicable emissions limit specified in paragraphs (e)(1) through (3) of this section as determined on a 30-boiler operating day rolling average basis.

(1) For an affected facility which commenced construction, any gases that contain NO\textsubscript{X} in excess of 130 ng/J (1.0 lb/MWh) gross energy output.

(2) For an affected facility which commenced reconstruction, any gases that contain NO\textsubscript{X} in excess of either:

(i) 130 ng/J (1.0 lb/MWh) gross energy output; or

(ii) 47 ng/J (0.11 lb/MMBtu) heat input.

(3) For an affected facility which commenced modification, any gases that contain NO\textsubscript{X} in excess of either:

(i) 180 ng/J (1.4 lb/MWh) gross energy output; or

(ii) 65 ng/J (0.15 lb/MMBtu) heat input.

(f) On and after the date on which the initial performance test is completed or required to be completed under §60.8, whichever date comes first, the owner or operator of an IGCC electric utility steam generating unit subject to the provisions of this subpart and for which construction, reconstruction, or modification commenced after February 28, 2005 but before May 4, 2011, shall meet the requirements specified in paragraphs (f)(1) through (3) of this section.

(1) Except as provided for in paragraphs (f)(2) and (3) of this section, the owner or operator shall not cause to be discharged into the atmosphere any gases that contain NO\textsubscript{X} (expressed as NO\textsubscript{2}) in excess of 130 ng/J (1.0 lb/MWh) gross energy output.

(2) When burning liquid fuel exclusively or in combination with solid-derived fuel such that the liquid fuel contributes 50 percent or more of the total heat input to the combined cycle combustion turbine, the owner or operator shall not cause to be discharged into the atmosphere any gases that contain NO\textsubscript{X} (expressed as NO\textsubscript{2}) in excess of 190 ng/J (1.5 lb/MWh) gross energy output.

(3) In cases when during a 30-boiler operating day rolling average compliance period liquid fuel is burned in such a manner to meet the conditions in paragraph (f)(2) of this section for only a portion of the clock hours in the 30-day compliance period, the owner or operator shall not cause to be discharged into the atmosphere any gases that contain NO\textsubscript{X} (expressed as NO\textsubscript{2}) in excess of the computed weighted-average emissions limit based on the proportion of gross energy output (in MWh) generated during the compliance period for each of emissions limits in paragraphs (f)(1) and (2) of this section.

(g) Except as provided in paragraphs (h) of this section and §60.45Da, on and after the date on which the initial performance test is completed or required to be completed under §60.8, whichever date comes first, no owner or operator of an affected facility that commenced construction, reconstruction, or modification after May 3, 2011, shall cause to be discharged
into the atmosphere from that affected facility any gases that contain NO\textsubscript{X} (expressed as NO\textsubscript{2}) in excess of the applicable emissions limit specified in paragraphs (g)(1) through (3) of this section.

(1) For an affected facility which commenced construction or reconstruction, any gases that contain NO\textsubscript{X} in excess of either:

(i) 88 ng/J (0.70 lb/MWh) gross energy output; or

(ii) 95 ng/J (0.76 lb/MWh) net energy output.

(2) For an affected facility which commenced construction or reconstruction and that burns 75 percent or more coal refuse (by heat input) on a 12-month rolling average basis, any gases that contain NO\textsubscript{X} in excess of either:

(i) 110 ng/J (0.85 lb/MWh) gross energy output; or

(ii) 120 ng/J (0.92 lb/MWh) net energy output.

(3) For an affected facility which commenced modification, any gases that contain NO\textsubscript{X} in excess of 140 ng/J (1.1 lb/MWh) gross energy output.

(h) The NO\textsubscript{X} emissions limits under this section do not apply to an owner or operator of an affected facility which is operating under a commercial demonstration permit issued by the Administrator in accordance with the provisions of §60.47Da.

[77 FR 9451, Feb. 16, 2012]
(a) An owner or operator of an affected facility proposing to demonstrate an emerging technology may apply to the Administrator for a commercial demonstration permit. The Administrator will issue a commercial demonstration permit in accordance with paragraph (e) of this section. Commercial demonstration permits may be issued only by the Administrator, and this authority will not be delegated.

(b) An owner or operator of an affected facility that combusts solid solvent refined coal (SRC-I) and who is issued a commercial demonstration permit by the Administrator is not subject to the SO$_2$ emission reduction requirements under §60.43Da(c) but must, as a minimum, reduce SO$_2$ emissions to 20 percent of the potential combustion concentration (80 percent reduction) for each 24-hour period of steam generator operation and to less than 520 ng/J (1.20 lb/MMBtu) heat input on a 30-day rolling average basis.

(c) An owner or operator of an affected facility that uses fluidized bed combustion (atmospheric or pressurized) and who is issued a commercial demonstration permit by the Administrator is not subject to the SO$_2$ emission reduction requirements under §60.43Da(a) but must, as a minimum, reduce SO$_2$ emissions to 15 percent of the potential combustion concentration (85 percent reduction) on a 30-day rolling average basis and to less than 520 ng/J (1.20 lb/MMBtu) heat input on a 30-day rolling average basis.

(d) The owner or operator of an affected facility that combusts coal-derived liquid fuel and who is issued a commercial demonstration permit by the Administrator is not subject to the applicable NO$_X$ emission limitation and percent reduction under §60.44Da(a) but must, as a minimum, reduce emissions to less than 300 ng/J (0.70 lb/MMBtu) heat input on a 30-day rolling average basis.

(e) Commercial demonstration permits may not exceed the following equivalent MW electrical generation capacity for any one technology category, and the total equivalent MW electrical generation capacity for all commercial demonstration plants may not exceed 15,000 MW.

<table>
<thead>
<tr>
<th>Technology</th>
<th>Pollutant</th>
<th>Equivalent electrical capacity (MW electrical output)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solid solvent refined coal (SCR I)</td>
<td>SO$_2$</td>
<td>6,000-10,000</td>
</tr>
<tr>
<td>Fluidized bed combustion (atmospheric)</td>
<td>SO$_2$</td>
<td>400-3,000</td>
</tr>
<tr>
<td>Fluidized bed combustion (pressurized)</td>
<td>SO$_2$</td>
<td>400-1,200</td>
</tr>
<tr>
<td>Coal liquefaction</td>
<td>NO$_X$</td>
<td>750-10,000</td>
</tr>
<tr>
<td>Total allowable for all technologies</td>
<td></td>
<td>15,000</td>
</tr>
</tbody>
</table>

(f) An owner or operator of an affected facility that uses a pressurized fluidized bed or a multi-pollutant emissions controls system who is issued a commercial demonstration permit by the Administrator is not subject to the total PM emission reduction requirements under §60.42Da but must, as a minimum, reduce PM emissions to less than 6.4 ng/J (0.015 lb/MMBtu) heat input.

(g) An owner or operator of an affected facility that uses a pressurized fluidized bed or a multi-pollutant emissions controls system who is issued a commercial demonstration permit by the Administrator is not subject to the SO$_2$ standards or emission reduction requirements under §60.43Da but must, as a minimum, reduce SO$_2$ emissions to 5 percent of the potential combustion concentration (95 percent reduction) or to less than 180 ng/J (1.4 lb/MWh) gross energy output on a 30-boiler operating day rolling average basis.

(h) An owner or operator of an affected facility that uses a pressurized fluidized bed or a multi-pollutant emissions control system or advanced combustion controls who is issued a commercial demonstration permit by the Administrator is not subject to the NO$_X$ standards or emission reduction requirements under §60.44Da but must, as a minimum, reduce NO$_X$ emissions to less than 130 ng/J (1.0 lb/MWh) or the combined NO$_X$ plus CO emissions to less than 180 ng/J (1.4 lb/MWh) gross energy output on a 30-boiler operating day rolling average basis.

(i) Commercial demonstration permits may not exceed the following equivalent MW electrical generation capacity for any one technology category listed in the following table.

<table>
<thead>
<tr>
<th>Technology</th>
<th>Pollutant</th>
<th>Equivalent electrical capacity (MW electrical output)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multi-pollutant Emission Control</td>
<td>SO$_2$</td>
<td>1.000</td>
</tr>
<tr>
<td>Multi-pollutant Emission Control</td>
<td>NO$_X$</td>
<td>1.000</td>
</tr>
<tr>
<td>Multi-pollutant Emission Control</td>
<td>PM</td>
<td>1.000</td>
</tr>
<tr>
<td>Pressurized Fluidized Bed Combustion</td>
<td>SO$_2$</td>
<td>1.000</td>
</tr>
<tr>
<td>Pressurized Fluidized Bed Combustion</td>
<td>NO$_X$</td>
<td>1.000</td>
</tr>
<tr>
<td>Pressurized Fluidized Bed Combustion</td>
<td>PM</td>
<td>1.000</td>
</tr>
<tr>
<td>Advanced Combustion Controls</td>
<td>NO$_X$</td>
<td>1.000</td>
</tr>
</tbody>
</table>

§60.48Da Compliance provisions.

(a) For affected facilities for which construction, modification, or reconstruction commenced before May 4, 2011, the applicable PM emissions limit and opacity standard under §60.42Da, SO₂ emissions limit under §60.43Da, and NOₓ emissions limit under §60.44Da apply at all times except during periods of startup, shutdown, or malfunction. For affected facilities for which construction, modification, or reconstruction commenced after May 3, 2011, the applicable SO₂ emissions limit under §60.43Da, NOₓ emissions limit under §60.44Da, and NOₓ plus CO emissions limit under §60.45Da apply at all times. The applicable PM emissions limit and opacity standard under §60.42Da apply at all times except during periods of startup and shutdown.

(b) After the initial performance test required under §60.8, compliance with the applicable SO₂ emissions limit and percentage reduction requirements under §60.43Da, NOₓ emissions limit under §60.44Da, and NOₓ plus CO emissions limit under §60.45Da is based on the average emission rate for 30 successive boiler operating days. A separate performance test is completed at the end of each boiler operating day after the initial performance test, and a new 30-boiler operating day rolling average emission rate for both SO₂, NOₓ or NOₓ plus CO as applicable, and a new percent reduction for SO₂ are calculated to demonstrate compliance with the standards.

(c) For the initial performance test required under §60.8, compliance with the applicable SO₂ emissions limits and percentage reduction requirements under §60.43Da, the NOₓ emissions limits under §60.44Da, and the NOₓ plus CO emissions limits under §60.45Da is based on the average emission rates for SO₂, NOₓ, CO, and percent reduction for SO₂ for the first 30 successive boiler operating days. The initial performance test is the only test in which at least 30 days prior notice is required unless otherwise specified by the Administrator. The initial performance test is to be scheduled so that the first boiler operating day of the 30 successive boiler operating days is completed within 60 days after achieving the maximum production rate at which the affected facility will be operated, but not later than 180 days after initial startup of the facility.

(d) For affected facilities for which construction, modification, or reconstruction commenced before May 4, 2011, compliance with applicable 30-boiler operating day rolling average SO₂ and NOₓ emissions limits is determined by calculating the arithmetic average of all hourly emission rates for SO₂ and NOₓ for the 30 successive boiler operating days, except for data obtained during startup, shutdown, or malfunction. For affected facilities for which construction, modification, or reconstruction commenced after May 3, 2011, compliance with applicable 30-boiler operating day rolling average SO₂ and NOₓ emissions limits is determined by dividing the sum of the SO₂ and NOₓ emissions for the 30 successive boiler operating days by the sum of the gross energy output or net energy output, as applicable, for the 30 successive boiler operating days.

(e) For affected facilities for which construction, modification, or reconstruction commenced before May 4, 2011, compliance with applicable SO₂ percentage reduction requirements is determined based on the average inlet and outlet SO₂ emission rates for the 30 successive boiler operating days. For affected facilities for which construction, modification, or reconstruction commenced after May 3, 2011, compliance with applicable SO₂ percentage reduction requirements is determined based on the “as fired” total potential emissions and the total outlet SO₂ emissions for the 30 successive boiler operating days.

(f) For affected facilities for which construction, modification, or reconstruction commenced before May 4, 2011, compliance with the applicable daily average PM emissions limit is determined by calculating the arithmetic average of all hourly emission rates each boiler operating day, except for data obtained during startup, shutdown, or malfunction periods. Daily averages are only calculated for boiler operating days that have non-out-of-control data for at least 18 hours of unit operation during which the standard applies. Instead, all of the non-out-of-control hourly emission rates of the operating day(s) not meeting the minimum 18 hours non-out-of-control data daily average requirement are averaged with all of the non-out-of-control hourly emission rates of the next boiler operating day with 18 hours or more of non-out-of-control PM CEMS data to determine compliance. For affected facilities for which construction or reconstruction commenced after May 3, 2011 that elect to demonstrate compliance using PM CEMS, compliance with the applicable PM emissions limit in §60.42Da is determined on a 30-boiler operating day rolling average basis by calculating the arithmetic average of all hourly PM emission rates for the 30 successive boiler operating days, except for data obtained during periods of startup and shutdown.

(g) For affected facilities for which construction, modification, or reconstruction commenced after May 3, 2011, compliance with applicable 30-boiler operating day rolling average NOₓ plus CO emissions limit is determined by dividing the sum of the NOₓ plus CO emissions for the 30 successive boiler operating days by the sum of the gross energy output or net energy output, as applicable, for the 30 successive boiler operating days.

(h) If an owner or operator has not obtained the minimum quantity of emission data as required under §60.49Da of this subpart, compliance of the affected facility with the emission requirements under §§60.43Da and 60.44Da of this subpart for the
day on which the 30-day period ends may be determined by the Administrator by following the applicable procedures in section 7 of Method 19 of appendix A of this part.

(i) **Compliance provisions for sources subject to §60.44Da(d)(1), (e)(1), (e)(2)(i), (e)(3)(i), (f), or (g).** The owner or operator shall calculate NO\textsubscript{X} emissions as \(1.194 \times 10^{-7}\) lb/scf-ppm times the average hourly NO\textsubscript{X} output concentration in ppm (measured according to the provisions of §60.49Da(c)), times the average hourly flow rate (measured in scfh, according to the provisions of §60.49Da(l) or §60.49Da(m)), divided by the average hourly gross energy output (measured according to the provisions of §60.49Da(k)) or the average hourly net energy output, as applicable. Alternatively, for oil-fired and gas-fired units, NO\textsubscript{X} emissions may be calculated by multiplying the hourly NO\textsubscript{X} emission rate in lb/MMBtu (measured by the CEMS required under §60.49Da(c) and (d)), by the hourly heat input rate (measured according to the provisions of §60.49Da(n)), and dividing the result by the average gross energy output (measured according to the provisions of §60.49Da(k)) or the average hourly net energy output, as applicable.

(j) **Compliance provisions for duct burners subject to §60.44Da(a)(1).** To determine compliance with the emissions limits for NO\textsubscript{X} required by §60.44Da(a) for duct burners used in combined cycle systems, either of the procedures described in paragraph (j)(1) or (2) of this section may be used:

1. The owner or operator of an affected duct burner shall conduct the performance test required under §60.8 using the appropriate methods in appendix A of this part. Compliance with the emissions limits under §60.44Da(a)(1) is determined on the average of three (nominal 1-hour) runs for the initial and subsequent performance tests. During the performance test, one sampling site shall be located in the exhaust of the turbine prior to the duct burner. A second sampling site shall be located at the outlet from the heat recovery steam generating unit. Measurements shall be taken at both sampling sites during the performance test; or

2. The owner or operator of an affected duct burner may elect to determine compliance by using the CEMS specified under §60.49Da for measuring NO\textsubscript{X} and oxygen (O\textsubscript{2}) (or carbon dioxide (CO\textsubscript{2})) and meet the requirements of §60.49Da. Alternatively, data from a NO\textsubscript{X} emission rate (i.e., NO\textsubscript{X}-diluent) CEMS certified according to the provisions of §75.20(c) of this chapter and appendix A to part 75 of this chapter, and meeting the quality assurance requirements of §75.21 of this chapter and appendix B to part 75 of this chapter, may be used, with the following caveats. Data used to meet the requirements of §60.51Da shall not include substitute data values derived from the missing data procedures in subpart D of part 75 of this chapter, nor shall the data have been bias adjusted according to the procedures of part 75 of this chapter. The sampling site shall be located at the outlet from the steam generating unit. The NO\textsubscript{X} emission rate at the outlet from the steam generating unit shall constitute the NO\textsubscript{X} emission rate from the duct burner of the combined cycle system.

(k) **Compliance provisions for duct burners subject to §60.44Da(d)(1) or (e)(1).** To determine compliance with the emission limitation for NO\textsubscript{X} required by §60.44Da(d)(1) or (e)(1) for duct burners used in combined cycle systems, either of the procedures described in paragraphs (k)(1) and (2) of this section may be used:

1. The owner or operator of an affected duct burner used in combined cycle systems shall determine compliance with the applicable NO\textsubscript{X} emission limitation in §60.44Da(d)(1) or (e)(1) as follows:

 (i) The emission rate (E) of NO\textsubscript{X} shall be computed using Equation 2 in this section:

 \[
 E = \frac{(C_{sg} \times Q_{sg}) - (C_{te} \times Q_{te})}{(O_{sg} \times h)} \quad \text{(Eq 2)}
 \]

 View or download PDF

 Where:

 \(E\) = Emission rate of NO\textsubscript{X} from the duct burner, ng/J (lb/MWh) gross energy output;

 \(C_{sg}\) = Average hourly concentration of NO\textsubscript{X} exiting the steam generating unit, ng/dscm (lb/dscf);

 \(C_{te}\) = Average hourly concentration of NO\textsubscript{X} in the turbine exhaust upstream from duct burner, ng/dscm (lb/dscf);

 \(Q_{sg}\) = Average hourly volumetric flow rate of exhaust gas from steam generating unit, dscm/h (dscf/h);

 \(Q_{te}\) = Average hourly volumetric flow rate of exhaust gas from combustion turbine, dscm/h (dscf/h);

 \(O_{sg}\) = Average hourly gross energy output from steam generating unit, J/h (MW); and

 \(h\) = Average hourly fraction of the total heat input to the steam generating unit derived from the combustion of fuel in the affected duct burner.

 (ii) Method 7E of appendix A of this part shall be used to determine the NO\textsubscript{X} concentrations (\(C_{sg}\) and \(C_{te}\)). Method 2, 2F or 2G of appendix A of this part, as appropriate, shall be used to determine the volumetric flow rates (\(Q_{sg}\) and \(Q_{te}\)) of the exhaust gases. The volumetric flow rate measurements shall be taken at the same time as the concentration measurements.
(iii) The owner or operator shall develop, demonstrate, and provide information satisfactory to the Administrator to
determine the average hourly gross energy output from the steam generating unit, and the average hourly percentage of the
total heat input to the steam generating unit derived from the combustion of fuel in the affected duct burner.

(iv) Compliance with the applicable NO\textsubscript{X} emission limitation in §60.44Da(d)(1) or (e)(1) is determined by the three-run
average (nominal 1-hour runs) for the initial and subsequent performance tests.

(2) The owner or operator of an affected duct burner used in a combined cycle system may elect to determine compliance
with the applicable NO\textsubscript{X} emission limitation in §60.44Da(d)(1) or (e)(1) on a 30-day rolling average basis as indicated in
paragraphs (k)(2)(i) through (iv) of this section.

(i) The emission rate (E) of NO\textsubscript{X} shall be computed using Equation 3 in this section:

\[E = \frac{\left(C_{sg} \times Q_{sg} \right)}{O_{cc}} \]

\textit{View or download PDF}

Where:

- E = Emission rate of NO\textsubscript{X} from the duct burner, ng/J (lb/MWh) gross energy output;
- C\textsubscript{sg} = Average hourly concentration of NO\textsubscript{X} exiting the steam generating unit, ng/dscm (lb/dscf);
- Q\textsubscript{sg} = Average hourly volumetric flow rate of exhaust gas from steam generating unit, dscm/h (dscf/h); and
- O\textsubscript{cc} = Average hourly gross energy output from entire combined cycle unit, J/h (MW).

(ii) The CEMS specified under §60.49Da for measuring NO\textsubscript{X} and O\textsubscript{2} (or CO\textsubscript{2}) shall be used to determine the average
hourly NO\textsubscript{X} concentrations (C\textsubscript{sg}). The continuous flow monitoring system specified in §60.49Da(l) or §60.49Da(m) shall be used
to determine the volumetric flow rate (Q\textsubscript{sg}) of the exhaust gas. If the option to use the flow monitoring system in §60.49Da(m) is
selected, the flow rate data used to meet the requirements of §60.51Da shall not include substitute data values derived from the
missing data procedures in subpart D of part 75 of this chapter, nor shall the data have been bias adjusted according to the
procedures of part 75 of this chapter. The sampling site shall be located at the outlet from the steam generating unit.

(iii) The continuous monitoring system specified under §60.49Da(k) for measuring and determining gross energy output
shall be used to determine the average hourly gross energy output from the entire combined cycle unit (O\textsubscript{cc}), which is the
combined output from the combustion turbine and the steam generating unit.

(iv) The owner or operator may, in lieu of installing, operating, and recording data from the continuous flow monitoring
system specified in §60.49Da(l), determine the mass rate (lb/h) of NO\textsubscript{X} emissions by installing, operating, and maintaining
continuous fuel flowmeters following the appropriate measurements procedures specified in appendix D of part 75 of this
chapter. If this compliance option is selected, the emission rate (E) of NO\textsubscript{X} shall be computed using Equation 4 in this section:

\[E = \frac{\left(ER_{sg} \times H_{cc} \right)}{O_{cc}} \]

\textit{View or download PDF}

Where:

- E = Emission rate of NO\textsubscript{X} from the duct burner, ng/J (lb/MWh) gross energy output;
- ER\textsubscript{sg} = Average hourly emission rate of NO\textsubscript{X} exiting the steam generating unit heat input calculated using appropriate F factor as described in Method
19 of appendix A of this part, ng/J (lb/MMBtu);
- H\textsubscript{cc} = Average hourly heat input rate of entire combined cycle unit, J/h (MMBtu/h); and
- O\textsubscript{cc} = Average hourly gross energy output from entire combined cycle unit, J/h (MW).

(3) When an affected duct burner steam generating unit utilizes a common steam turbine with one or more affected duct
burner steam generating units, the owner or operator shall either:

(i) Determine compliance with the applicable NO\textsubscript{X} emissions limits by measuring the emissions combined with the
emissions from the other unit(s) utilizing the common steam turbine; or

(ii) Develop, demonstrate, and provide information satisfactory to the Administrator on methods for apportioning the
combined gross energy output from the steam turbine for each of the affected duct burners. The Administrator may approve
such demonstrated substitute methods for apportioning the combined gross energy output measured at the steam turbine whenever the demonstration ensures accurate estimation of emissions regulated under this part.

(i) [Reserved]

(m) Compliance provisions for sources subject to §60.43Da(i)(1)(i), (i)(2)(i), (i)(3)(i), (j)(1)(i), (j)(2)(i), (j)(3)(i), (l)(1)(i), (l)(1)(ii), or (l)(2). The owner or operator shall calculate SO2 emissions as \(1.66 \times 10^{-7}\) lb/scf-ppm times the average hourly SO2 output concentration in ppm (measured according to the provisions of §60.49Da(b)), times the average hourly flow rate (measured according to the provisions of §60.49Da(l) or §60.49Da(m)), divided by the average hourly gross energy output (measured according to the provisions of §60.49Da(k)) or the average hourly net energy output, as applicable. Alternatively, for oil-fired and gas-fired units, SO2 emissions may be calculated by multiplying the hourly SO2 emission rate (in lb/MMBtu), measured by the CEMS required under §60.49Da, by the hourly heat input rate (measured according to the provisions of §60.49Da(n)), and dividing the result by the average gross energy output (measured according to the provisions of §60.49Da(k)) or the average hourly net energy output, as applicable.

(n) Compliance provisions for sources subject to §60.42Da(c)(1) or (e)(1)(i). The owner or operator shall calculate PM emissions by multiplying the average hourly PM output concentration (measured according to the provisions of §60.49Da(l)), by the average hourly flow rate (measured according to the provisions of §60.49Da(l) or §60.49Da(m)), and dividing by the average hourly gross energy output (measured according to the provisions of §60.49Da(k)) or the average hourly net energy output, as applicable.

(o) Compliance provisions for sources subject to §60.42Da(c)(2), (d), or (e)(1)(ii). Except as provided for in paragraph (p) of this section, the owner or operator must demonstrate compliance with each applicable emissions limit according to the requirements in paragraphs (o)(1) through (o)(5) of this section.

(1) You must conduct a performance test to demonstrate initial compliance with the applicable PM emissions limit in §60.42Da by the applicable date specified in §60.8(a). Thereafter, you must conduct each subsequent performance test within 12 calendar months following the date the previous performance test was required to be conducted. You must conduct each performance test according to the requirements in §60.8 using the test methods and procedures in §60.50Da. The owner or operator of an affected facility that has not operated for 60 consecutive calendar days prior to the date that the subsequent performance test would have been required had the unit been operating is not required to perform the subsequent performance test until 30 calendar days after the next boiler operating day. Requests for additional 30 day extensions shall be granted by the relevant air division or office director of the appropriate Regional Office of the U.S. EPA.

(2) You must monitor the performance of each electrostatic precipitator or fabric filter (baghouse) operated to comply with the applicable PM emissions limit in §60.42Da using a continuous opacity monitoring system (COMS) according to the requirements in paragraphs (o)(3) and (o)(4) of this section, as applicable to your control device.

(i) Each COMS must meet Performance Specification 1 in 40 CFR part 60, appendix B.

(ii) You must comply with the quality assurance requirements in paragraphs (o)(2)(ii)(A) through (E) of this section.

(A) You must automatically (intrinsic to the opacity monitor) check the zero and upscale (span) calibration drifts at least once daily. For a particular COMS, the acceptable range of zero and upscale calibration materials is as defined in the applicable version of Performance Specification 1 in 40 CFR part 60, appendix B.

(B) You must adjust the zero and span whenever the 24-hour zero drift or 24-hour span drift exceeds 4 percent opacity. The COMS must allow for the amount of excess zero and span drift measured at the 24-hour interval checks to be recorded and quantified. The optical surfaces exposed to the effluent gases must be cleaned prior to performing the zero and span drift adjustments, except for systems using automatic zero adjustments. For systems using automatic zero adjustments, the optical surfaces must be cleaned when the cumulative automatic zero compensation exceeds 4 percent opacity.

(C) You must apply a method for producing a simulated zero opacity condition and an upscale (span) opacity condition using a certified neutral density filter or other related technique to produce a known obscuration of the light beam. All procedures applied must provide a system check of the analyzer internal optical surfaces and all electronic circuitry including the lamp and photodetector assembly.

(D) Except during periods of system breakdowns, repairs, calibration checks, and zero and span adjustments, the COMS must be in continuous operation and must complete a minimum of one cycle of sampling and analyzing for each successive 10 second period and one cycle of data recording for each successive 6-minute period.

(E) You must reduce all data from the COMS to 6-minute averages. Six-minute opacity averages must be calculated from 36 or more data points equally spaced over each 6-minute period. Data recorded during periods of system breakdowns, repairs,
(iii) During each performance test conducted according to paragraph (o)(1) of this section, you must establish an opacity baseline level. The value of the opacity baseline level is determined by averaging all of the 6-minute average opacity values (reported to the nearest 0.1 percent opacity) from the COMS measurements recorded during each of the test run intervals conducted for the performance test, and then adding 2.5 percent opacity to your calculated average opacity value for all of the test runs. If your opacity baseline level is less than 5.0 percent, then the opacity baseline level is set at 5.0 percent.

(iv) You must evaluate the preceding 24-hour average opacity level measured by the COMS each boiler operating day excluding periods of affected facility startup, shutdown, or malfunction. If the measured 24-hour average opacity emission level is greater than the baseline opacity level determined in paragraph (o)(2)(iii) of this section, you must initiate investigation of the relevant equipment and control systems within 24 hours of the first discovery of the high opacity incident and take the appropriate corrective action as soon as practicable to adjust control settings or repair equipment to reduce the measured 24-hour average opacity to a level below the baseline opacity level. In cases when a wet scrubber is used in combination with another PM control device that serves as the primary PM control device, the wet scrubber must be maintained and operated.

(v) You must record the opacity measurements, calculations performed, and any corrective actions taken. The record of corrective action taken must include the date and time during which the measured 24-hour average opacity was greater than baseline opacity level, and the date, time, and description of the corrective action.

(vi) If the measured 24-hour average opacity for your affected facility remains at a level greater than the opacity baseline level after 7 boiler operating days, then you must conduct a new PM performance test according to paragraph (o)(1) of this section and establish a new opacity baseline value according to paragraph (o)(2) of this section. This new performance test must be conducted within 60 days of the date that the measured 24-hour average opacity was first determined to exceed the baseline opacity level unless a waiver is granted by the permitting authority.

(3) As an alternative to complying with the requirements of paragraph (o)(2) of this section, an owner or operator may elect to monitor the performance of an electrostatic precipitator (ESP) operated to comply with the applicable PM emissions limit in §60.42Da using an ESP predictive model developed in accordance with the requirements in paragraphs (o)(3)(i) through (v) of this section.

(i) You must calibrate the ESP predictive model with each PM control device used to comply with the applicable PM emissions limit in §60.42Da operating under normal conditions. In cases when a wet scrubber is used in combination with an ESP to comply with the PM emissions limit, the wet scrubber must be maintained and operated.

(ii) You must develop a site-specific monitoring plan that includes a description of the ESP predictive model used, the model input parameters, and the procedures and criteria for establishing monitoring parameter baseline levels indicative of compliance with the PM emissions limit. You must submit the site-specific monitoring plan for approval by the permitting authority. For reference purposes in preparing the monitoring plan, see the OAQPS “Compliance Assurance Monitoring (CAM) Protocol for an Electrostatic Precipitator (ESP) Controlling Particulate Matter (PM) Emissions from a Coal-Fired Boiler.” This document is available from the U.S. Environmental Protection Agency (U.S. EPA); Office of Air Quality Planning and Standards; Sector Policies and Programs Division; Measurement Policy Group (D243-02), Research Triangle Park, NC 27711. This document is also available on the Technology Transfer Network (TTN) under Emission Measurement Center Continuous Emission Monitoring.

(iii) You must run the ESP predictive model using the applicable input data each boiler operating day and evaluate the model output for the preceding boiler operating day excluding periods of affected facility startup, shutdown, or malfunction. If the values for one or more of the model parameters exceed the applicable baseline levels determined according to your approved site-specific monitoring plan, you must initiate investigation of the relevant equipment and control systems within 24 hours of the first discovery of a model parameter deviation and, take the appropriate corrective action as soon as practicable to adjust control settings or repair equipment to return the model output to within the applicable baseline levels.

(iv) You must record the ESP predictive model inputs and outputs and any corrective actions taken. The record of corrective action taken must include the date and time during which the model output values exceeded the applicable baseline levels, and the date, time, and description of the corrective action.

(v) If after 7 consecutive days a model parameter continues to exceed the applicable baseline level, then you must conduct a new PM performance test according to paragraph (o)(1) of this section. This new performance test must be conducted within 60 calendar days of the date that the model parameter was first determined to exceed its baseline level unless a waiver is granted by the permitting authority.

(4) As an alternative to complying with the requirements of paragraph (o)(2) of this section, an owner or operator may elect to monitor the performance of a fabric filter (baghouse) operated to comply with the applicable PM emissions limit in §60.42Da.
by using a bag leak detection system according to the requirements in paragraphs (o)(4)(i) through (v) of this section.

(i) Each bag leak detection system must meet the specifications and requirements in paragraphs (o)(4)(i)(A) through (H) of this section.

(A) The bag leak detection system must be certified by the manufacturer to be capable of detecting PM emissions at concentrations of 1 milligram per actual cubic meter (0.00044 grains per actual cubic foot) or less.

(B) The bag leak detection system sensor must provide output of relative PM loadings. The owner or operator must continuously record the output from the bag leak detection system using electronic or other means (e.g., using a strip chart recorder or a data logger.)

(C) The bag leak detection system must be equipped with an alarm system that will react when the system detects an increase in relative particulate loading over the alarm set point established according to paragraph (o)(4)(i)(D) of this section, and the alarm must be located such that it can be noticed by the appropriate plant personnel.

(D) In the initial adjustment of the bag leak detection system, you must establish, at a minimum, the baseline output by adjusting the sensitivity (range) and the averaging period of the device, the alarm set points, and the alarm delay time.

(E) Following initial adjustment, you must not adjust the averaging period, alarm set point, or alarm delay time without approval from the permitting authority except as provided in paragraph (d)(1)(vi) of this section.

(F) Once per quarter, you may adjust the sensitivity of the bag leak detection system to account for seasonal effects, including temperature and humidity, according to the procedures identified in the site-specific monitoring plan required by paragraph (o)(4)(ii) of this section.

(G) You must install the bag leak detection sensor downstream of the fabric filter and upstream of any wet scrubber.

(H) Where multiple detectors are required, the system’s instrumentation and alarm may be shared among detectors.

(ii) You must develop and submit to the permitting authority for approval a site-specific monitoring plan for each bag leak detection system. You must operate and maintain the bag leak detection system according to the site-specific monitoring plan at all times. Each monitoring plan must describe the items in paragraphs (o)(4)(ii)(A) through (F) of this section.

(A) Installation of the bag leak detection system;

(B) Initial and periodic adjustment of the bag leak detection system, including how the alarm set-point will be established;

(C) Operation of the bag leak detection system, including quality assurance procedures;

(D) How the bag leak detection system will be maintained, including a routine maintenance schedule and spare parts inventory list;

(E) How the bag leak detection system output will be recorded and stored; and

(F) Corrective action procedures as specified in paragraph (o)(4)(iii) of this section. In approving the site-specific monitoring plan, the permitting authority may allow owners and operators more than 3 hours to alleviate a specific condition that causes an alarm if the owner or operator identifies in the monitoring plan this specific condition as one that could lead to an alarm, adequately explains why it is not feasible to alleviate this condition within 3 hours of the time the alarm occurs, and demonstrates that the requested time will ensure alleviation of this condition as expeditiously as practicable.

(iii) For each bag leak detection system, you must initiate procedures to determine the cause of every alarm within 1 hour of the alarm. Except as provided in paragraph (o)(4)(ii)(F) of this section, you must alleviate the cause of the alarm within 3 hours of the alarm by taking whatever corrective action(s) are necessary. Corrective actions may include, but are not limited to the following:

(A) Inspecting the fabric filter for air leaks, torn or broken bags or filter media, or any other condition that may cause an increase in particulate emissions;

(B) Sealing off defective bags or filter media;

(C) Replacing defective bags or filter media or otherwise repairing the control device;

(D) Sealing off a defective fabric filter compartment;

(E) Cleaning the bag leak detection system probe or otherwise repairing the bag leak detection system; or
(F) Shutting down the process producing the particulate emissions.

(iv) You must maintain records of the information specified in paragraphs (o)(4)(iv)(A) through (C) of this section for each bag leak detection system.

(A) Records of the bag leak detection system output;

(B) Records of bag leak detection system adjustments, including the date and time of the adjustment, the initial bag leak detection system settings, and the final bag leak detection system settings; and

(C) The date and time of all bag leak detection system alarms, the time that procedures to determine the cause of the alarm were initiated, if procedures were initiated within 1 hour of the alarm, the cause of the alarm, an explanation of the actions taken, the date and time the cause of the alarm was alleviated, and if the alarm was alleviated within 3 hours of the alarm.

(v) If after any period composed of 30 boiler operating days during which the alarm rate exceeds 5 percent of the process operating time (excluding control device or process startup, shutdown, and malfunction), then you must conduct a new PM performance test according to paragraph (o)(1) of this section. This new performance test must be conducted within 60 calendar days of the date that the alarm rate was first determined to exceed 5 percent limit unless a waiver is granted by the permitting authority.

(5) An owner or operator of a modified affected facility electing to meet the emission limitations in §60.42Da(d) shall determine the percent reduction in PM by using the emission rate for PM determined by the performance test conducted according to the requirements in paragraph (o)(1) of this section and the ash content on a mass basis of the fuel burned during each performance test run as determined by analysis of the fuel as fired.

(p) As an alternative to meeting the compliance provisions specified in paragraph (o) of this section, an owner or operator may elect to install, evaluate, maintain, and operate a CEMS measuring PM emissions discharged from the affected facility to the atmosphere and record the output of the system as specified in paragraphs (p)(1) through (p)(8) of this section.

(1) The owner or operator shall submit a written notification to the Administrator of intent to demonstrate compliance with this subpart by using a CEMS measuring PM. This notification shall be sent at least 30 calendar days before the initial startup of the monitor for compliance determination purposes. The owner or operator may discontinue operation of the monitor and instead return to demonstration of compliance with this subpart according to the requirements in paragraph (o) of this section by submitting written notification to the Administrator of such intent at least 30 calendar days before shutdown of the monitor for compliance determination purposes.

(2) Each CEMS shall be installed, evaluated, operated, and maintained according to the requirements in §60.49Da(v).

(3) The initial performance evaluation shall be completed no later than 180 days after the date of initial startup of the affected facility, as specified under §60.8 of subpart A of this part or within 180 days of the date of notification to the Administrator required under paragraph (p)(1) of this section, whichever is later.

(4) Compliance with the applicable emissions limit shall be determined based on the 24-hour daily (block) average of the hourly arithmetic average emissions concentrations using the continuous monitoring system outlet data. The 24-hour block arithmetic average emission concentration shall be calculated using EPA Reference Method 19 of appendix A of this part, section 4.1.

(5) At a minimum, non-out-of-control CEMS hourly averages shall be obtained for 75 percent of all operating hours on a 30-boiler operating day rolling average basis. Beginning on January 1, 2012, non-out-of-control CEMS hourly averages shall be obtained for 90 percent of all operating hours on a 30-boiler operating day rolling average basis.

(i) At least two data points per hour shall be used to calculate each 1-hour arithmetic average.

(ii) [Reserved]

(6) The 1-hour arithmetic averages required shall be expressed in ng/J, MMBtu/hr, or lb/MWh and shall be used to calculate the boiler operating day daily arithmetic average emission concentrations. The 1-hour arithmetic averages shall be calculated using the data points required under §60.13(e)(2) of subpart A of this part.

(7) All non-out-of-control CEMS data shall be used in calculating average emission concentrations even if the minimum CEMS data requirements of paragraph (j)(5) of this section are not met.

(8) When PM emissions data are not obtained because of CEMS breakdowns, repairs, calibration checks, and zero and span adjustments, emissions data shall be obtained by using other monitoring systems as approved by the Administrator or EPA Reference Method 19 of appendix A of this part to provide, as necessary, non-out-of-control emissions data for a minimum
of 90 percent (only 75 percent is required prior to January 1, 2012) of all operating hours per 30-boiler operating day rolling average.

(q) Compliance provisions for sources subject to §60.42Da(b). An owner or operator of an affected facility subject to the opacity standard in §60.42Da(b) shall monitor the opacity of emissions discharged from the affected facility to the atmosphere according to the requirements in §60.49Da(a), as applicable to the affected facility.

(r) Compliance provisions for sources subject to §60.45Da. To determine compliance with the NO\textsubscript{X} plus CO emissions limit, the owner or operator shall use the procedures specified in paragraphs (r)(1) through (3) of this section.

(1) Calculate NO\textsubscript{X} emissions as 1.194×10^{-7} lb/scf-ppm times the average hourly NO\textsubscript{X} output concentration in ppm (measured according to the provisions of §60.49Da(c)), times the average hourly flow rate (measured in scfh, according to the provisions of §60.49Da(l) or §60.49Da(m)), divided by the average hourly gross energy output (measured according to the provisions of §60.49Da(k)) or the average hourly net energy output, as applicable.

(2) Calculate CO emissions by multiplying the average hourly CO output concentration (measured according to the provisions of §60.49Da(u), by the average hourly flow rate (measured according to the provisions of §60.49Da(l) or §60.49Da(m)), and dividing by the average hourly gross energy output (measured according to the provisions of §60.49Da(k)) or the average hourly net energy output, as applicable.

(3) Calculate NO\textsubscript{X} plus CO emissions by summing the NO\textsubscript{X} emissions results from paragraph (r)(1) of this section plus the CO emissions results from paragraph (r)(2) of this section.

(s) Affirmative defense for exceedance of emissions limit during malfunction. In response to an action to enforce the standards set forth in paragraph §§60.42Da, 60.43Da, 60.44Da, and 60.45Da, you may assert an affirmative defense to a claim for civil penalties for exceedances of such standards that are caused by malfunction, as defined at 40 CFR 60.2. Appropriate penalties may be assessed, however, if you fail to meet your burden of proving all of the requirements in the affirmative defense as specified in paragraphs (s)(1) and (2) of this section. The affirmative defense shall not be available for claims for injunctive relief.

(1) To establish the affirmative defense in any action to enforce such a limit, you must timely meet the notification requirements in paragraph (s)(2) of this section, and must prove by a preponderance of evidence that:

 (i) The excess emissions:

 (A) Were caused by a sudden, infrequent, and unavoidable failure of air pollution control and monitoring equipment, process equipment, or a process to operate in a normal or usual manner; and

 (B) Could not have been prevented through careful planning, proper design, or better operation and maintenance practices; and

 (C) Did not stem from any activity or event that could have been foreseen and avoided, or planned for; and

 (D) Were not part of a recurring pattern indicative of inadequate design, operation, or maintenance; and

 (ii) Repairs were made as expeditiously as possible when the applicable emissions limits were being exceeded. Off-shift and overtime labor were used, to the extent practicable to make these repairs; and

 (iii) The frequency, amount, and duration of the excess emissions (including any bypass) were minimized to the maximum extent practicable during periods of such emissions; and

 (iv) If the excess emissions resulted from a bypass of control equipment or a process, then the bypass was unavoidable to prevent loss of life, personal injury, or severe property damage; and

 (v) All possible steps were taken to minimize the impact of the excess emissions on ambient air quality, the environment, and human health; and

 (vi) All emissions monitoring and control systems were kept in operation if at all possible, consistent with safety and good air pollution control practices; and

 (vii) All of the actions in response to the excess emissions were documented by properly signed, contemporaneous operating logs; and

 (viii) At all times, the facility was operated in a manner consistent with good practices for minimizing emissions; and
A written root cause analysis has been prepared, the purpose of which is to determine, correct, and eliminate the primary causes of the malfunction and the excess emissions resulting from the malfunction event at issue. The analysis shall also specify, using best monitoring methods and engineering judgment, the amount of excess emissions that were the result of the malfunction.

(2) **Notification.** The owner or operator of the affected source experiencing an exceedance of its emission limit(s) during a malfunction shall notify the Administrator by telephone or facsimile (FAX) transmission as soon as possible, but no later than two business days after the initial occurrence of the malfunction or, if it is not possible to determine within two business days whether the malfunction caused or contributed to an exceedance, no later than two business days after the owner or operator knew or should have known that the malfunction caused or contributed to an exceedance, but, in no event later than two business days after the end of the averaging period, if it wishes to avail itself of an affirmative defense to civil penalties for that malfunction. The owner or operator seeking to assert an affirmative defense shall also submit a written report to the Administrator within 45 days of the initial occurrence of the exceedance of the standard in §63.9991 to demonstrate, with all necessary supporting documentation, that it has met the requirements set forth in paragraph (s)(1) of this section. The owner or operator may seek an extension of this deadline for up to 30 additional days by submitting a written request to the Administrator before the expiration of the 45 day period. Until a request for an extension has been approved by the Administrator, the owner or operator is subject to the requirement to submit such report within 45 days of the initial occurrence of the exceedance.

§60.49Da Emission monitoring.

(a) An owner or operator of an affected facility subject to the opacity standard in §60.42Da must monitor the opacity of emissions discharged from the affected facility to the atmosphere according to the applicable requirements in paragraphs (a)(1) through (4) of this section.

(1) Except as provided for in paragraphs (a)(2) and (4) of this section, the owner or operator of an affected facility subject to an opacity standard, shall install, calibrate, maintain, and operate a COMS, and record the output of the system, for measuring the opacity of emissions discharged to the atmosphere. If opacity interference due to water droplets exists in the stack (for example, from the use of an FGD system), the opacity is monitored upstream of the interference (at the inlet to the FGD system). If opacity interference is experienced at all locations (both at the inlet and outlet of the SO\textsubscript{2} control system), alternate parameters indicative of the PM control system’s performance and/or good combustion are monitored (subject to the approval of the Administrator).

(2) As an alternative to the monitoring requirements in paragraph (a)(1) of this section, an owner or operator of an affected facility that meets the conditions in either paragraph (a)(2)(i), (ii), (iii), or (iv) of this section may elect to monitor opacity as specified in paragraph (a)(3) of this section.

(i) The affected facility uses a fabric filter (baghouse) to meet the standards in §60.42Da and a bag leak detection system is installed and operated according to the requirements in paragraphs §60.48Da(o)(4)(i) through (v);

(ii) The affected facility burns only gaseous or liquid fuels (excluding residual oil) with potential SO\textsubscript{2} emissions rates of 26 ng/J (0.060 lb/MMBtu) or less, and does not use a post-combustion technology to reduce emissions of SO\textsubscript{2} or PM;

(iii) The affected facility meets all of the conditions specified in paragraphs (a)(2)(iii)(A) through (C) of this section.

(A) No post-combustion technology (except a wet scrubber) is used for reducing PM, SO\textsubscript{2}, or CO emissions;

(B) Only natural gas, gaseous fuels, or fuel oils that contain less than or equal to 0.30 weight percent sulfur are burned; and

(C) Emissions of CO discharged to the atmosphere are maintained at levels less than or equal to 1.4 lb/MWh on a boiler operating day average basis as demonstrated by the use of a CEMS measuring CO emissions according to the procedures specified in paragraph (u) of this section; or

(iv) The affected facility uses an ESP and uses an ESP predictive model to monitor the performance of the ESP developed in accordance and operated according to the most current requirements in section §60.48Da of this part.

(3) The owner or operator of an affected facility that meets the conditions in paragraph (a)(2) of this section may, as an alternative to using a COMS, elect to monitor visible emissions using the applicable procedures specified in paragraphs (a)(3)(i) through (iv) of this section. The opacity performance test requirement in paragraph (a)(3)(i) must be conducted by April 29,
and monitoring specific parameters for the affected facility indicative of compliance with the opacity standard. For testing monitoring plan approved by the permitting authority. This monitoring plan must include procedures and criteria for establishing rate of each fuel is no greater than 26 ng/J (0.060 lb/MMBtu), and the unit operates according to a written site-specific performance test using the procedures in paragraph (a)(3)(i) of this section within 45 calendar days according to the procedures specified in paragraphs (a)(3)(iii)(A) and (B) of this section.

(A) The owner or operator shall conduct 10 minute observations (during normal operation) each operating day the affected facility fires fuel for which an opacity standard is applicable using Method 22 of appendix A-7 of this part and demonstrate that the sum of the occurrences of any visible emissions is not in excess of 5 percent of the observation period (i.e., 30 seconds per 10 minute period). If the sum of the occurrence of any visible emissions is greater than 30 seconds during the initial 10 minute observation, immediately conduct a 30 minute observation. If the sum of the occurrence of visible emissions is greater than 5 percent of the observation period (i.e., 90 seconds per 30 minute period), the owner or operator shall either document and adjust the operation of the facility and demonstrate within 24 hours that the sum of the occurrence of visible emissions is equal to or less than 5 percent during a 30 minute observation (i.e., 90 seconds) or conduct a new Method 9 of appendix A-4 of this part performance test using the procedures in paragraph (a)(3)(i) of this section within 45 calendar days according to the requirements in §60.50Da(b)(3).

(B) If no visible emissions are observed for 10 operating days during which an opacity standard is applicable, observations can be reduced to once every 7 operating days during which an opacity standard is applicable. If any visible emissions are observed, daily observations shall be resumed.

(iv) If the maximum 6-minute opacity is less than 10 percent during the most recent Method 9 of appendix A-4 of this part performance tests, the owner or operator may, as an alternative to performing subsequent Method 9 of appendix A-4 of this part performance tests, elect to perform subsequent monitoring using a digital opacity compliance system according to the site-specific monitoring plan approved by the Administrator. The observations must be similar, but not necessarily identical, to the performance tests, elect to perform subsequent monitoring using Method 22 of appendix A-7 of this part according to the procedures specified in paragraphs (a)(3)(iii)(A) and (B) of this section.

(A) The owner or operator shall conduct a performance test using Method 9 of appendix A-4 of this part and the procedures in §60.11. If during the initial 60 minutes of the observation all the 6-minute averages are less than 10 percent and all the individual 15-second observations are less than or equal to 20 percent, then the observation period may be reduced from 3 hours to 60 minutes.

(ii) Except as provided in paragraph (a)(3)(iii) or (iv) of this section, the owner or operator shall conduct subsequent Method 9 of appendix A-4 of this part performance tests using the procedures in paragraph (a)(3)(i) of this section according to the applicable schedule in paragraphs (a)(3)(ii)(A) through (a)(3)(ii)(C) of this section, as determined by the most recent Method 9 of appendix A-4 of this part performance test results.

(A) If the maximum 6-minute average opacity is less than or equal to 5 percent, a subsequent Method 9 of appendix A-4 of this part performance test must be completed within 12 calendar months from the date that the most recent performance test was conducted or within 45 days of the next day that fuel with an opacity standard is combusted, whichever is later;

(B) If the maximum 6-minute average opacity is greater than 5 percent but less than or equal to 10 percent, a subsequent Method 9 of appendix A-4 of this part performance test must be completed within 3 calendar months from the date that the most recent performance test was conducted or within 45 days of the next day that fuel with an opacity standard is combusted, whichever is later; or

(C) If the maximum 6-minute average opacity is greater than 10 percent, a subsequent Method 9 of appendix A-4 of this part performance test must be completed within 45 calendar days from the date that the most recent performance test was conducted.

(iii) If the maximum 6-minute opacity is less than 10 percent during the most recent Method 9 of appendix A-4 of this part performance test, the owner or operator may, as an alternative to performing subsequent Method 9 of appendix A-4 of this part performance tests, elect to perform subsequent monitoring using Method 22 of appendix A-7 of this part according to the procedures specified in paragraphs (a)(3)(iii)(A) and (B) of this section.

(A) The owner or operator shall conduct 10 minute observations (during normal operation) each operating day the affected facility combusts only gaseous and/or liquid fuels (excluding residue oil) where the potential SO₂ emissions rate of each fuel is no greater than 26 ng/J (0.060 lb/MMBtu), and the unit operates according to a written site-specific monitoring plan approved by the permitting authority. This monitoring plan must include procedures and criteria for establishing and monitoring specific parameters for the affected facility indicative of compliance with the opacity standard. For testing

(iv) If the maximum 6-minute opacity is less than 10 percent during the most recent Method 9 of appendix A-4 of this part performance tests, the owner or operator may, as an alternative to performing subsequent Method 9 of appendix A-4 performance tests, elect to perform subsequent monitoring using a digital opacity compliance system according to a site-specific monitoring plan approved by the Administrator. The observations must be similar, but not necessarily identical, to the requirements in paragraph (a)(3)(iii) of this section. For reference purposes in preparing the monitoring plan, see OAQPS “Determination of Visible Emission Opacity from Stationary Sources Using Computer-Based Photographic Analysis Systems.” This document is available from the U.S. Environmental Protection Agency (U.S. EPA); Office of Air Quality and Planning Standards; Sector Policies and Programs Division; Measurement Policy Group (D243-02), Research Triangle Park, NC 27711. This document is also available on the Technology Transfer Network (TTN) under Emission Measurement Center Preliminary Methods.

(4) An owner or operator of an affected facility that is subject to an opacity standard under §60.42Da is not required to operate a COMS provided that affected facility meets the conditions in either paragraph (a)(4)(i) or (ii) of this section.

(i) The affected facility combusts only gaseous and/or liquid fuels (excluding residue oil) where the potential SO₂ emissions rate of each fuel is no greater than 26 ng/J (0.060 lb/MMBtu), and the unit operates according to a written site-specific monitoring plan approved by the permitting authority. This monitoring plan must include procedures and criteria for establishing and monitoring specific parameters for the affected facility indicative of compliance with the opacity standard. For testing
performed as part of this site-specific monitoring plan, the permitting authority may require as an alternative to the notification and reporting requirements specified in §§60.8 and 60.11 that the owner or operator submit any deviations with the excess emissions report required under §60.51Da(d).

(ii) The owner or operator of the affected facility installs, calibrates, operates, and maintains a particulate matter continuous parametric monitoring system (PM CPMS) according to the requirements specified in subpart UUUUU of part 63.

(b) The owner or operator of an affected facility must install, calibrate, maintain, and operate a CEMS, and record the output of the system, for measuring SO\textsubscript{2} emissions, except where only gaseous and/or liquid fuels (excluding residual oil) where the potential SO\textsubscript{2} emissions rate of each fuel is 26 ng/J (0.060 lb/MMBtu) or less are combusted, as follows:

(1) Sulfur dioxide emissions are monitored at both the inlet and outlet of the SO\textsubscript{2} control device.

(2) For a facility that qualifies under the numerical limit provisions of §60.43Da, SO\textsubscript{2} emissions are only monitored as discharged to the atmosphere.

(3) An “as fired” fuel monitoring system (upstream of coal pulverizers) meeting the requirements of Method 19 of appendix A of this part may be used to determine potential SO\textsubscript{2} emissions in place of a continuous SO\textsubscript{2} emission monitor at the inlet to the SO\textsubscript{2} control device as required under paragraph (b)(1) of this section.

(4) If the owner or operator has installed and certified a SO\textsubscript{2} CEMS according to the requirements of §75.20(c)(1) of this chapter and appendix A to part 75 of this chapter, and is continuing to meet the ongoing quality assurance requirements of §75.21 of this chapter and appendix B to part 75 of this chapter, that CEMS may be used to meet the requirements of this section, provided that:

(i) A CO\textsubscript{2} or O\textsubscript{2} continuous monitoring system is installed, calibrated, maintained and operated at the same location, according to paragraph (d) of this section; and

(ii) For sources subject to an SO\textsubscript{2} emission limit in lb/MMBtu under §60.43Da:

(A) When relative accuracy testing is conducted, SO\textsubscript{2} concentration data and CO\textsubscript{2} (or O\textsubscript{2}) data are collected simultaneously; and

(B) In addition to meeting the applicable SO\textsubscript{2} and CO\textsubscript{2} (or O\textsubscript{2}) relative accuracy specifications in Figure 2 of appendix B to part 75 of this chapter, the relative accuracy (RA) standard in section 13.2 of Performance Specification 2 in appendix B to this part is met when the RA is calculated on a lb/MMBtu basis; and

(iii) The reporting requirements of §60.51Da are met. The SO\textsubscript{2} and, if required, CO\textsubscript{2} (or O\textsubscript{2}) data reported to meet the requirements of §60.51Da shall not include substitute data values derived from the missing data procedures in subpart D of part 75 of this chapter, nor shall the SO\textsubscript{2} data have been bias adjusted according to the procedures of part 75 of this chapter.

(c)(1) The owner or operator of an affected facility shall install, calibrate, maintain, and operate a CEMS, and record the output of the system, for measuring NO\textsubscript{x} emissions discharged to the atmosphere; or

(2) If the owner or operator has installed a NO\textsubscript{x} emission rate CEMS to meet the requirements of part 75 of this chapter and is continuing to meet the ongoing requirements of part 75 of this chapter, that CEMS may be used to meet the requirements of this section, except that the owner or operator shall also meet the requirements of §60.51Da. Data reported to meet the requirements of §60.51Da shall not include data substituted using the missing data procedures in subpart D of part 75 of this chapter, nor shall the data have been bias adjusted according to the procedures of part 75 of this chapter.

(d) The owner or operator of an affected facility not complying with an output based limit shall install, calibrate, maintain, and operate a CEMS, and record the output of the system, for measuring the O\textsubscript{2} or carbon dioxide (CO\textsubscript{2}) content of the flue gases at each location where SO\textsubscript{2} or NO\textsubscript{x} emissions are monitored. For affected facilities subject to a lb/MMBtu SO\textsubscript{2} emission limit under §60.43Da, if the owner or operator has installed and certified a CO\textsubscript{2} or O\textsubscript{2} monitoring system according to §75.20(c) of this chapter and appendix A to part 75 of this chapter and the monitoring system continues to meet the applicable quality-assurance provisions of §75.21 of this chapter and appendix B to part 75 of this chapter, that CEMS may be used together with the part 75 SO\textsubscript{2} concentration monitoring system described in paragraph (b) of this section, to determine the SO\textsubscript{2} emission rate in lb/MMBtu. SO\textsubscript{2} data used to meet the requirements of §60.51Da shall not include substitute data values derived from the missing data procedures in subpart D of part 75 of this chapter, nor shall the data have been bias adjusted according to the procedures of part 75 of this chapter.

(e) The CEMS under paragraphs (b), (c), and (d) of this section are operated and data recorded during all periods of operation of the affected facility including periods of startup, shutdown, and malfunction, except for CEMS breakdowns, repairs,
calibration checks, and zero and span adjustments.

(f)(1) For units that began construction, reconstruction, or modification on or before February 28, 2005, the owner or operator shall obtain emission data for at least 18 hours in at least 22 out of 30 successive boiler operating days. If this minimum data requirement cannot be met with CEMS, the owner or operator shall supplement emission data with other monitoring systems approved by the Administrator or the reference methods and procedures as described in paragraph (h) of this section.

(2) For units that began construction, reconstruction, or modification after February 28, 2005, the owner or operator shall obtain emission data for at least 90 percent of all operating hours for each 30 successive boiler operating days. If this minimum data requirement cannot be met with CEMS, the owner or operator shall supplement emission data with other monitoring systems approved by the Administrator or the reference methods and procedures as described in paragraph (h) of this section.

(g) The 1-hour averages required under paragraph §60.13(h) are expressed in ng/J (lb/MMBtu) heat input and used to calculate the average emission rates under §60.48Da. The 1-hour averages are calculated using the data points required under §60.13(h)(2).

(h) When it becomes necessary to supplement CEMS data to meet the minimum data requirements in paragraph (f) of this section, the owner or operator shall use the reference methods and procedures as specified in this paragraph. Acceptable alternative methods and procedures are given in paragraph (j) of this section.

(1) Method 6 of appendix A of this part shall be used to determine the SO\(_2\) concentration at the same location as the SO\(_2\) monitor. Samples shall be taken at 60-minute intervals. The sampling time and sample volume for each sample shall be at least 20 minutes and 0.020 dscm (0.71 dscf). Each sample represents a 1-hour average.

(2) Method 7 of appendix A of this part shall be used to determine the NO\(_X\) concentration at the same location as the NO\(_X\) monitor. Samples shall be taken at 30-minute intervals. The arithmetic average of two consecutive samples represents a 1-hour average.

(3) The emission rate correction factor, integrated bag sampling and analysis procedure of Method 3B of appendix A of this part shall be used to determine the O\(_2\) or CO\(_2\) concentration at the same location as the O\(_2\) or CO\(_2\) monitor. Samples shall be taken for at least 30 minutes in each hour. Each sample represents a 1-hour average.

(4) The procedures in Method 19 of appendix A of this part shall be used to compute each 1-hour average concentration in ng/J (lb/MMBtu) heat input.

(i) The owner or operator shall use methods and procedures in this paragraph to conduct monitoring system performance evaluations under §60.13(c) and calibration checks under §60.13(d). Acceptable alternative methods and procedures are given in paragraph (j) of this section.

(1) Methods 3B, 6, and 7 of appendix A of this part shall be used to determine O\(_2\), SO\(_2\), and NO\(_X\) concentrations, respectively.

(2) SO\(_2\) or NO\(_X\) (NO), as applicable, shall be used for preparing the calibration gas mixtures (in N\(_2\), as applicable) under Performance Specification 2 of appendix B of this part.

(3) For affected facilities burning only fossil fuel, the span value for a COMS is between 60 and 80 percent. Span values for a CEMS measuring NO\(_X\) shall be determined using one of the following procedures:

 (i) Except as provided under paragraph (i)(3)(ii) of this section, NO\(_X\) span values shall be determined as follows:

<table>
<thead>
<tr>
<th>Fossil fuel</th>
<th>Span values for NO(_X) (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gas</td>
<td>500.</td>
</tr>
<tr>
<td>Liquid</td>
<td>500.</td>
</tr>
<tr>
<td>Solid</td>
<td>1,000.</td>
</tr>
<tr>
<td>Combination</td>
<td>500 (x + y) + 1,000z.</td>
</tr>
</tbody>
</table>

Where:

\(x = \) Fraction of total heat input derived from gaseous fossil fuel,

\(y = \) Fraction of total heat input derived from liquid fossil fuel, and

\(z = \) Fraction of total heat input derived from solid fossil fuel.
As an alternative to meeting the requirements of paragraph (i)(3)(i) of this section, the owner or operator of an affected facility may elect to use the NO\textsubscript{X} span values determined according to section 2.1.2 in appendix A to part 75 of this chapter.

All span values computed under paragraph (i)(3)(i) of this section for burning combinations of fossil fuels are rounded to the nearest 500 ppm. Span values computed under paragraph (i)(3)(ii) of this section shall be rounded off according to section 2.1.2 in appendix A to part 75 of this chapter.

For affected facilities burning fossil fuel, alone or in combination with non-fossil fuel and determining span values under paragraph (i)(3)(i) of this section, the span value of the SO\textsubscript{2} CEMS at the inlet to the SO\textsubscript{2} control device is 125 percent of the maximum estimated hourly potential emissions of the fuel fired, and the outlet of the SO\textsubscript{2} control device is 50 percent of maximum estimated hourly potential emissions of the fuel fired. For affected facilities determining span values under paragraph (i)(3)(ii) of this section, SO\textsubscript{2} span values shall be determined according to section 2.1.1 in appendix A to part 75 of this chapter.

The owner or operator may use the following as alternatives to the reference methods and procedures specified in this section:

For Method 6 of appendix A of this part, Method 6A or 6B (whenever Methods 6 and 3 or 3B of appendix A of this part data are used) or 6C of appendix A of this part may be used. Each Method 6B of appendix A of this part sample obtained over 24 hours represents 24 1-hour averages. If Method 6A or 6B of appendix A of this part is used under paragraph (i) of this section, the conditions under §60.48Da(d)(1) apply; these conditions do not apply under paragraph (h) of this section.

For Method 7 of appendix A of this part, Method 7A, 7C, 7D, or 7E of appendix A of this part may be used. If Method 7C, 7D, or 7E of appendix A of this part is used, the sampling time for each run shall be 1 hour.

For Method 3 of appendix A of this part, Method 3A or 3B of appendix A of this part may be used if the sampling time is 1 hour.

For Method 3B of appendix A of this part, Method 3A of appendix A of this part may be used.

The procedures specified in paragraphs (k)(1) through (3) of this section shall be used to determine gross energy output for sources demonstrating compliance with an output-based standard.

The owner or operator of an affected facility with electricity generation shall install, calibrate, maintain, and operate a wattmeter; measure gross electrical output in MWh on a continuous basis; and record the output of the monitor.

The owner or operator of an affected facility with process steam generation shall install, calibrate, maintain, and operate meters for steam flow, temperature, and pressure; measure gross process steam output in joules per hour (or Btu per hour) on a continuous basis; and record the output of the monitor.

For an affected facility generating process steam in combination with electrical generation, the gross energy output is determined according to the definition of “gross energy output” specified in §60.41Da that is applicable to the affected facility.

The owner or operator of an affected facility demonstrating compliance with an output-based standard shall install, certify, operate, and maintain a continuous flow monitoring system meeting the requirements of Performance Specification 6 of appendix B of this part and the calibration drift (CD) assessment, relative accuracy test audit (RATA), and reporting provisions of procedure 1 of appendix F of this part, and record the output of the system, for measuring the volumetric flow rate of exhaust gases discharged to the atmosphere; or

Alternatively, data from a continuous flow monitoring system certified according to the requirements of §75.20(c) of this chapter and appendix A to part 75 of this chapter, and continuing to meet the applicable quality control and quality assurance requirements of §75.21 of this chapter and appendix B to part 75 of this chapter, may be used. Flow rate data reported to meet the requirements of §60.51Da shall not include substitute data values derived from the missing data procedures in subpart D of part 75 of this chapter, nor shall the data have been bias adjusted according to the procedures of part 75 of this chapter.

Gas-fired and oil-fired units. The owner or operator of an affected unit that qualifies as a gas-fired or oil-fired unit, as defined in 40 CFR 72.2, may use, as an alternative to the requirements specified in either paragraph (l) or (m) of this section, a fuel flow monitoring system certified and operated according to the requirements of appendix D of part 75 of this chapter.

The owner or operator of a duct burner, as described in §60.41Da, which is subject to the NO\textsubscript{X} standards of §60.44Da(a)(1), (d)(1), or (e)(1) is not required to install or operate a CEMS to measure NO\textsubscript{X} emissions; a wattmeter to measure gross electrical output; meters to measure steam flow, temperature, and pressure; and a continuous flow monitoring system to measure the flow of exhaust gases discharged to the atmosphere.

(p)-(r) [Reserved]
(s) The owner or operator shall prepare and submit to the Administrator for approval a unit-specific monitoring plan for each monitoring system, at least 45 days before commencing certification testing of the monitoring systems. The owner or operator shall comply with the requirements in your plan. The plan must address the requirements in paragraphs (s)(1) through (6) of this section.

(1) Installation of the CEMS sampling probe or other interface at a measurement location relative to each affected process unit such that the measurement is representative of the exhaust emissions (e.g., on or downstream of the last control device);

(2) Performance and equipment specifications for the sample interface, the pollutant concentration or parametric signal analyzer, and the data collection and reduction systems;

(3) Performance evaluation procedures and acceptance criteria (e.g., calibrations, relative accuracy test audits (RATA), etc.);

(4) Ongoing operation and maintenance procedures in accordance with the general requirements of §60.13(d) or part 75 of this chapter (as applicable);

(5) Ongoing data quality assurance procedures in accordance with the general requirements of §60.13 or part 75 of this chapter (as applicable); and

(6) Ongoing recordkeeping and reporting procedures in accordance with the requirements of this subpart.

(t) The owner or operator of an affected facility demonstrating compliance with the output-based emissions limit under §60.42Da must either install, certify, operate, and maintain a CEMS for measuring PM emissions according to the requirements of paragraph (v) of this section or install, calibrate, operate, and maintain a PM CPMS according to the requirements for new facilities specified in subpart UUUUU of part 63 of this chapter. An owner or operator of an affected facility demonstrating compliance with the input-based emissions limit in §60.42Da may install, certify, operate, and maintain a CEMS for measuring PM emissions according to the requirements of paragraph (v) of this section.

(u) The owner or operator of an affected facility using a CEMS measuring CO emissions to meet requirements of this subpart shall meet the requirements specified in paragraphs (u)(1) through (4) of this section.

(1) You must monitor CO emissions using a CEMS according to the procedures specified in paragraphs (u)(1)(i) through (iv) of this section.

(i) The CO CEMS must be installed, certified, maintained, and operated according to the provisions in §60.58b(i)(3) of subpart Eb of this part.

(ii) Each 1-hour CO emissions average is calculated using the data points generated by the CO CEMS expressed in parts per million by volume corrected to 3 percent oxygen (dry basis).

(iii) At a minimum, non-out-of-control 1-hour CO emissions averages must be obtained for at least 90 percent of the operating hours on a 30-boiler operating day rolling average basis. The 1-hour averages are calculated using the data points required in §60.13(h)(2).

(iv) Quarterly accuracy determinations and daily calibration drift tests for the CO CEMS must be performed in accordance with procedure 1 in appendix F of this part.

(2) You must calculate the 1-hour average CO emissions levels for each boiler operating day by multiplying the average hourly CO output concentration measured by the CO CEMS times the corresponding average hourly flue gas flow rate and divided by the corresponding average hourly useful energy output from the affected facility. The 24-hour average CO emission level is determined by calculating the arithmetic average of the hourly CO emission levels computed for each boiler operating day.

(3) You must evaluate the preceding 24-hour average CO emission level each boiler operating day excluding periods of affected facility startup, shutdown, or malfunction. If the 24-hour average CO emission level is greater than 1.4 lb/MWh, you must initiate investigation of the relevant equipment and control systems within 24 hours of the first discovery of the high emission incident and, take the appropriate corrective action as soon as practicable to adjust control settings or repair equipment to reduce the 24-hour average CO emission level to 1.4 lb/MWh or less.

(4) You must record the CO measurements and calculations performed according to paragraph (u)(3) of this section and any corrective actions taken. The record of corrective action taken must include the date and time during which the 24-hour average CO emission level was greater than 1.4 lb/MWh, and the date, time, and description of the corrective action.
(v) The owner or operator of an affected facility using a CEMS measuring PM emissions to meet requirements of this subpart shall install, certify, operate, and maintain the CEMS as specified in paragraphs (v)(1) through (v)(4) of this section.

(1) The owner or operator shall conduct a performance evaluation of the CEMS according to the applicable requirements of §60.13, Performance Specification 11 in appendix B of this part, and procedure 2 in appendix F of this part.

(2) During each PM correlation testing run of the CEMS required by Performance Specification 11 in appendix B of this part, PM and O_2 (or CO_2) data shall be collected concurrently (or within a 30- to 60-minute period) by both the CEMS and performance tests conducted using the following test methods.

(i) For PM, Method 5 or 5B of appendix A-3 of this part or Method 17 of appendix A-6 of this part shall be used; and

(ii) For O_2 (or CO_2), Method 3A or 3B of appendix A-2 of this part, as applicable shall be used.

(3) Quarterly accuracy determinations and daily calibration drift tests shall be performed in accordance with procedure 2 in appendix F of this part. Relative Response Audit’s must be performed annually and Response Correlation Audits must be performed every 3 years.

(4) As of January 1, 2012, and within 90 days after the date of completing each performance test, as defined in §60.8, conducted to demonstrate compliance with this subpart, you must submit relative accuracy test audit (i.e., reference method) data and performance test data, except opacity data, electronically to EPA’s Central Data Exchange (CDX) by using the Electronic Reporting Tool (ERT) (see http://www.epa.gov/ttn/chief/ert/ert tool.html) or other compatible electronic spreadsheet. Only data collected using test methods compatible with ERT are subject to this requirement to be submitted electronically into EPA's WebFire database.

(w) The owner or operator using a SO_2, NO_x, CO_2, and O_2 CEMS to meet the requirements of this subpart shall install, certify, operate, and maintain the CEMS as specified in paragraphs (w)(1) through (w)(5) of this section.

(1) Except as provided for under paragraphs (w)(2), (w)(3), and (w)(4) of this section, each SO_2, NO_x, CO_2, and O_2 CEMS required under paragraphs (b) through (d) of this section shall be installed, certified, and operated in accordance with the applicable procedures in Performance Specification 2 or 3 in appendix B to this part or according to the procedures in appendices A and B to part 75 of this chapter. Daily calibration drift assessments and quarterly accuracy determinations shall be done in accordance with Procedure 1 in appendix F to this part, and a data assessment report (DAR), prepared according to section 7 of Procedure 1 in appendix F to this part, shall be submitted with each compliance report required under §60.51Da.

(2) As an alternative to meeting the requirements of paragraph (w)(1) of this section, an owner or operator may elect to implement the following alternative data accuracy assessment procedures. For all required CO_2 and O_2 CEMS and for SO_2 and NO_x CEMS with span values greater than or equal to 100 ppm, the daily calibration error test and calibration adjustment procedures described in sections 2.1.1 and 2.1.3 of appendix B to part 75 of this chapter may be followed instead of the CD assessment procedures in Procedure 1, section 4.1 of appendix F of this part. If this option is selected, the data validation and out-of-control provisions in sections 2.1.4 and 2.1.5 of appendix B to part 75 of this chapter shall be followed instead of the excessive CD and out-of-control criteria in Procedure 1, section 4.3 of appendix F to this part. For the purposes of data validation under this subpart, the excessive CD and out-of-control criteria in Procedure 1, section 4.3 of appendix F to this part shall apply to SO_2 and NO_x span values less than 100 ppm;

(3) As an alternative to meeting the requirements of paragraph (w)(1) of this section, an owner or operator may elect to implement the following alternative data accuracy assessment procedures. For all required CO_2 and O_2 CEMS and for SO_2 and NO_x CEMS with span values greater than 30 ppm, quarterly linearity checks may be performed in accordance with section 2.2.1 of appendix B to part 75 of this chapter, instead of performing the cylinder gas audits (CGAs) described in Procedure 1, section 5.1.2 of appendix F to this part. If this option is selected: The frequency of the linearity checks shall be as specified in section 2.2.1 of appendix B to part 75 of this chapter; the applicable linearity specifications in section 3.2 of appendix A to part 75 of this chapter shall be met; the data validation and out-of-control criteria in section 2.2.3 of appendix B to part 75 of this chapter shall be followed instead of the excessive audit inaccuracy and out-of-control criteria in Procedure 1, section 5.2 of appendix F to this part; and the grace period provisions in section 2.2.4 of appendix B to part 75 of this chapter shall apply. For the purposes of data validation under this subpart, the cylinder gas audits described in Procedure 1, section 5.1.2 of appendix F to this part shall be performed for SO_2 and NO_x span values less than or equal to 30 ppm;

(4) As an alternative to meeting the requirements of paragraph (w)(1) of this section, an owner or operator may elect to implement the following alternative data accuracy assessment procedures. For SO_2, CO_2, and O_2 CEMS and for NO_x CEMS, RATAs may be performed in accordance with section 2.3 of appendix B to part 75 of this chapter instead of following the procedures described in Procedure 1, section 5.1.1 of appendix F to this part. If this option is selected: The frequency of each RATA shall be as specified in section 2.3.1 of appendix B to part 75 of this chapter; the applicable relative accuracy specifications shown in Figure 2 in appendix B to part 75 of this chapter shall be met; the data validation and out-of-
control criteria in section 2.3.2 of appendix B to part 75 of this chapter shall be followed instead of the excessive audit
inaccuracy and out-of-control criteria in Procedure 1, section 5.2 of appendix F to this part; and the grace period provisions in
section 2.3.3 of appendix B to part 75 of this chapter shall apply. For the purposes of data validation under this subpart, the
relative accuracy specification in section 13.2 of Performance Specification 2 in appendix B to this part shall be met on a
lb/MMBtu basis for SO₂ (regardless of the SO₂ emission level during the RATA), and for NOₓ when the average NOₓ emission
rate measured by the reference method during the RATA is less than 0.100 lb/MMBtu;

(5) If the owner or operator elects to implement the alternative data assessment procedures described in paragraphs (w)(2)
through (w)(4) of this section, each data assessment report shall include a summary of the results of all of the RATAs, linearity
checks, CGAs, and calibration error or drift assessments required by paragraphs (w)(2) through (w)(4) of this section.

23402, Apr. 19, 2012; 78 FR 24083, Apr. 24, 2013]
%Rf = Percent reduction from fuel pretreatment, percent; and
%Rg = Percent reduction by SO₂ control system, percent.

(2) The procedures in Method 19 of appendix A of this part may be used to determine percent reduction (%Rf) of sulfur by such processes as fuel pretreatment (physical coal cleaning, hydrodesulfurization of fuel oil, etc.), coal pulverizers, and bottom and fly ash interactions. This determination is optional.

(3) The procedures in Method 19 of appendix A of this part shall be used to determine the percent SO₂ reduction (%Rg) of any SO₂ control system. Alternatively, a combination of an “as fired” fuel monitor and emission rates measured after the control system, following the procedures in Method 19 of appendix A of this part, may be used if the percent reduction is calculated using the average emission rate from the SO₂ control device and the average SO₂ input rate from the “as fired” fuel analysis for 30 successive boiler operating days.

(4) The appropriate procedures in Method 19 of appendix A of this part shall be used to determine the emission rate.

(5) The CEMS in §60.49Da(b) and (d) shall be used to determine the concentrations of SO₂ and CO₂ or O₂.

(d) The owner or operator shall determine compliance with the NOₓ standard in §60.44Da as follows:

(1) The appropriate procedures in Method 19 of appendix A of this part shall be used to determine the emission rate of NOₓ.

(2) The continuous monitoring system in §60.49Da(c) and (d) shall be used to determine the concentrations of NOₓ and CO₂ or O₂.

(e) The owner or operator may use the following as alternatives to the reference methods and procedures specified in this section:

(1) For Method 5 or 5B of appendix A-3 of this part, Method 17 of appendix A-6 of this part may be used at facilities with or without wet FGD systems if the stack temperature at the sampling location does not exceed an average temperature of 160 °C (320 °F). The procedures of sections 8.1 and 11.1 of Method 5B of appendix A-3 of this part may be used in Method 17 of appendix A-6 of this part only if it is used after wet FGD systems. Method 17 of appendix A-6 of this part shall not be used after wet FGD systems if the effluent is saturated or laden with water droplets.

(2) The Fc factor (CO₂) procedures in Method 19 of appendix A of this part may be used to compute the emission rate of PM under the stipulations of §60.46(d)(1). The CO₂ shall be determined in the same manner as the O₂ concentration.

(f) The owner or operator of an electric utility combined cycle gas turbine that does not meet the definition of an IGCC must conduct performance tests for PM, SO₂, and NOₓ using the procedures of Method 19 of appendix A-7 of this part. The SO₂ and NOₓ emission rates calculations from the gas turbine used in Method 19 of appendix A-7 of this part are determined when the gas turbine is performance tested under subpart GG of this part. The potential uncontrolled PM emission rate from a gas turbine is defined as 17 ng/J (0.04 lb/MMBtu) heat input.

(4) Identification of the boiler operating days for which pollutant or diluent data have not been obtained by an approved method for at least 75 percent of the hours of operation of the facility; justification for not obtaining sufficient data; and description of corrective actions taken.

(5) Identification of the times when emissions data have been excluded from the calculation of average emission rates because of startup, shutdown, or malfunction.

(6) Identification of "F" factor used for calculations, method of determination, and type of fuel combusted.

(7) Identification of times when hourly averages have been obtained based on manual sampling methods.

(8) Identification of the times when the pollutant concentration exceeded full span of the CEMS.

(9) Description of any modifications to CEMS which could affect the ability of the CEMS to comply with Performance Specifications 2 or 3.

(c) If the minimum quantity of emission data as required by §60.49Da is not obtained for any 30 successive boiler operating days, the following information obtained under the requirements of §60.48Da(h) is reported to the Administrator for that 30-day period:

(1) The number of hourly averages available for outlet emission rates (no) and inlet emission rates (ni) as applicable.

(2) The standard deviation of hourly averages for outlet emission rates (so) and inlet emission rates (si) as applicable.

(3) The lower confidence limit for the mean outlet emission rate (Eo*) and the upper confidence limit for the mean inlet emission rate (Ei*) as applicable.

(4) The applicable potential combustion concentration.

(5) The ratio of the upper confidence limit for the mean outlet emission rate (Eo*) and the allowable emission rate (Estd) as applicable.

(d) In addition to the applicable requirements in §60.7, the owner or operator of an affected facility subject to the opacity limits in §60.43c(c) and conducting performance tests using Method 9 of appendix A-4 of this part shall submit excess emission reports for any excess emissions from the affected facility that occur during the reporting period and maintain records according to the requirements specified in paragraph (d)(1) of this section.

(1) For each performance test conducted using Method 9 of appendix A-4 of this part, the owner or operator shall keep the records including the information specified in paragraphs (d)(1)(i) through (iii) of this section.

(i) Dates and time intervals of all opacity observation periods;

(ii) Name, affiliation, and copy of current visible emission reading certification for each visible emission observer participating in the performance test; and

(iii) Copies of all visible emission observer opacity field data sheets.

(2) [Reserved]

(e) If fuel pretreatment credit toward the SO₂ emission standard under §60.43Da is claimed, the owner or operator of the affected facility shall submit a signed statement:

(1) Indicating what percentage cleaning credit was taken for the calendar quarter, and whether the credit was determined in accordance with the provisions of §60.50Da and Method 19 of appendix A of this part; and

(2) Listing the quantity, heat content, and date each pretreated fuel shipment was received during the previous quarter; the name and location of the fuel pretreatment facility; and the total quantity and total heat content of all fuels received at the affected facility during the previous quarter.

(f) For any periods for which opacity, SO₂ or NOₓ emissions data are not available, the owner or operator of the affected facility shall submit a signed statement indicating if any changes were made in operation of the emission control system during the period of data unavailability. Operations of the control system and affected facility during periods of data unavailability are to be compared with operation of the control system and affected facility before and following the period of data unavailability.

(g) [Reserved]
(h) The owner or operator of the affected facility shall submit a signed statement indicating whether:

(1) The required CEMS calibration, span, and drift checks or other periodic audits have or have not been performed as specified.

(2) The data used to show compliance was or was not obtained in accordance with approved methods and procedures of this part and is representative of plant performance.

(3) The minimum data requirements have or have not been met; or, the minimum data requirements have not been met for errors that were unavoidable.

(4) Compliance with the standards has or has not been achieved during the reporting period.

(i) For the purposes of the reports required under §60.7, periods of excess emissions are defined as all 6-minute periods during which the average opacity exceeds the applicable opacity standards under §60.42Da(b). Opacity levels in excess of the applicable opacity standard and the date of such excesses are to be submitted to the Administrator each calendar quarter.

(j) The owner or operator of an affected facility shall submit the written reports required under this section and subpart A to the Administrator semiannually for each six-month period. All semiannual reports shall be postmarked by the 30th day following the end of each six-month period.

(k) The owner or operator of an affected facility may submit electronic quarterly reports for SO\textsubscript{2} and/or NO\textsubscript{X} and/or opacity in lieu of submitting the written reports required under paragraphs (b) and (i) of this section. The format of each quarterly electronic report shall be coordinated with the permitting authority. The electronic report(s) shall be submitted no later than 30 days after the end of the calendar quarter and shall be accompanied by a certification statement from the owner or operator, indicating whether compliance with the applicable emission standards and minimum data requirements of this subpart was achieved during the reporting period.

§60.52Da Recordkeeping requirements.

(a) [Reserved]

(b) The owner or operator of an affected facility subject to the opacity limits in §60.42Da(b) that elects to monitor emissions according to the requirements in §60.49Da(a)(3) shall maintain records according to the requirements specified in paragraphs (b)(1) through (3) of this section, as applicable to the visible emissions monitoring method used.

(1) For each performance test conducted using Method 9 of appendix A-4 of this part, the owner or operator shall keep the records including the information specified in paragraphs (b)(1)(i) through (iii) of this section.

(i) Dates and time intervals of all opacity observation periods;

(ii) Name, affiliation, and copy of current visible emission reading certification for each visible emission observer participating in the performance test; and

(iii) Copies of all visible emission observer opacity field data sheets;

(2) For each performance test conducted using Method 22 of appendix A-4 of this part, the owner or operator shall keep the records including the information specified in paragraphs (b)(2)(i) through (iv) of this section.

(i) Dates and time intervals of all visible emissions observation periods;

(ii) Name and affiliation for each visible emission observer participating in the performance test;

(iii) Copies of all visible emission observer opacity field data sheets; and

(iv) Documentation of any adjustments made and the time the adjustments were completed to the affected facility operation by the owner or operator to demonstrate compliance with the applicable monitoring requirements.

(3) For each digital opacity compliance system, the owner or operator shall maintain records and submit reports according to the requirements specified in the site-specific monitoring plan approved by the Administrator.

[74 FR 5083, Jan. 28, 2009, as amended at 77 FR 9459, Feb. 16, 2012]
§60.330 Applicability and designation of affected facility.

(a) The provisions of this subpart are applicable to the following affected facilities: All stationary gas turbines with a heat input at peak load equal to or greater than 10.7 gigajoules (10 million Btu) per hour, based on the lower heating value of the fuel fired.

(b) Any facility under paragraph (a) of this section which commences construction, modification, or reconstruction after October 3, 1977, is subject to the requirements of this part except as provided in paragraphs (e) and (j) of §60.332.

§60.331 Definitions.

As used in this subpart, all terms not defined herein shall have the meaning given them in the Act and in subpart A of this part.

(a) Stationary gas turbine means any simple cycle gas turbine, regenerative cycle gas turbine or any gas turbine portion of a combined cycle steam/electric generating system that is not self propelled. It may, however, be mounted on a vehicle for portability.

(b) Simple cycle gas turbine means any stationary gas turbine which does not recover heat from the gas turbine exhaust gases to preheat the inlet combustion air to the gas turbine, or which does not recover heat from the gas turbine exhaust gases to heat water or generate steam.

(c) Regenerative cycle gas turbine means any stationary gas turbine which recovers heat from the gas turbine exhaust gases to preheat the inlet combustion air to the gas turbine.

(d) Combined cycle gas turbine means any stationary gas turbine which recovers heat from the gas turbine exhaust gases to heat water or generate steam.

(e) Emergency gas turbine means any stationary gas turbine which operates as a mechanical or electrical power source only when the primary power source for a facility has been rendered inoperable by an emergency situation.

(f) Ice fog means an atmospheric suspension of highly reflective ice crystals.

(g) ISO standard day conditions means 288 degrees Kelvin, 60 percent relative humidity and 101.3 kilopascals pressure.

(h) Efficiency means the gas turbine manufacturer's rated heat rate at peak load in terms of heat input per unit of power output based on the lower heating value of the fuel.
(i) **Peak load** means 100 percent of the manufacturer's design capacity of the gas turbine at ISO standard day conditions.

(ii) **Base load** means the load level at which a gas turbine is normally operated.

(k) **Fire-fighting turbine** means any stationary gas turbine that is used solely to pump water for extinguishing fires.

(i) **Turbines employed in oil/gas production or oil/gas transportation** means any stationary gas turbine used to provide power to extract crude oil/natural gas from the earth or to move crude oil/natural gas, or products refined from these substances through pipelines.

(m) A **Metropolitan Statistical Area or MSA** as defined by the Department of Commerce.

(n) **Offshore platform gas turbines** means any stationary gas turbine located on a platform in an ocean.

(o) **Garrison facility** means any permanent military installation.

(p) **Gas turbine model** means a group of gas turbines having the same nominal air flow, combustor inlet pressure, combustor inlet temperature, firing temperature, turbine inlet temperature and turbine inlet pressure.

(q) **Electric utility stationary gas turbine** means any stationary gas turbine constructed for the purpose of supplying more than one-third of its potential electric output capacity to any utility power distribution system for sale.

(r) **Emergency fuel** is a fuel fired by a gas turbine only during circumstances, such as natural gas supply curtailment or breakdown of delivery system, that make it impossible to fire natural gas in the gas turbine.

(s) **Unit operating hour** means a clock hour during which any fuel is combusted in the affected unit. If the unit combusts fuel for the entire clock hour, it is considered to be a full unit operating hour. If the unit combusts fuel for only part of the clock hour, it is considered to be a partial unit operating hour.

(t) **Excess emissions** means a specified averaging period over which either:

 (1) The NO_x emissions are higher than the applicable emission limit in §60.332;

 (2) The total sulfur content of the fuel being combusted in the affected facility exceeds the limit specified in §60.333; or

 (3) The recorded value of a particular monitored parameter is outside the acceptable range specified in the parameter monitoring plan for the affected unit.

(u) **Natural gas** means a naturally occurring fluid mixture of hydrocarbons (e.g., methane, ethane, or propane) produced in geological formations beneath the Earth's surface that maintains a gaseous state at standard atmospheric temperature and pressure under ordinary conditions. Natural gas contains 20.0 grains or less of total sulfur per 100 standard cubic feet. Equivalents of this in other units are as follows: 0.068 weight percent total sulfur, 680 parts per million by weight (ppmw) total sulfur, and 338 parts per million by volume (ppmv) at 20 degrees Celsius total sulfur. Additionally, natural gas must either be composed of at least 70 percent methane by volume or have a gross caloric value between 950 and 1100 British thermal units (Btu) per standard cubic foot. Natural gas does not include the following gaseous fuels: landfill gas, digester gas, refinery gas, sour gas, blast furnace gas, coal-derived gas, producer gas, coke oven gas, or any gaseous fuel produced in a process which might result in highly variable sulfur content or heating value.

(v) **Duct burner** means a device that combuts fuel and that is placed in the exhaust duct from another source, such as a stationary gas turbine, internal combustion engine, kiln, etc., to allow the firing of additional fuel to heat the exhaust gases before the exhaust gases enter a heat recovery steam generating unit.

(w) **Lean premix stationary combustion turbine** means any stationary combustion turbine where the air and fuel are thoroughly mixed to form a lean mixture for combustion in the combustor. Mixing may occur before or in the combustion chamber. A unit which is capable of operating in both lean premix and diffusion flame modes is considered a lean premix stationary combustion turbine when it is in the lean premix mode, and it is considered a diffusion flame stationary combustion turbine when it is in the diffusion flame mode.

(x) **Diffusion flame stationary combustion turbine** means any stationary combustion turbine where fuel and air are injected at the combustor and are mixed only by diffusion prior to ignition. A unit which is capable of operating in both lean premix and diffusion flame modes is considered a lean premix stationary combustion turbine when it is in the lean premix mode, and it is considered a diffusion flame stationary combustion turbine when it is in the diffusion flame mode.

(y) **Unit operating day** means a 24-hour period between 12:00 midnight and the following midnight during which any fuel is combusted at any time in the unit. It is not necessary for fuel to be combusted continuously for the entire 24-hour period.
§60.332 Standard for nitrogen oxides.

(a) On and after the date on which the performance test required by §60.8 is completed, every owner or operator subject to the provisions of this subpart as specified in paragraphs (b), (c), and (d) of this section shall comply with one of the following, except as provided in paragraphs (e), (f), (g), (h), (i), (j), (k), and (l) of this section.

(1) No owner or operator subject to the provisions of this subpart shall cause to be discharged into the atmosphere from any stationary gas turbine, any gases which contain nitrogen oxides in excess of:

\[
STD = 0.0075 \left(\frac{14.4}{Y} \right) + F
\]

View or download PDF

where:

STD = allowable ISO corrected (if required as given in §60.335(b)(1)) NO\textsubscript{X} emission concentration (percent by volume at 15 percent oxygen and on a dry basis),

Y = manufacturer's rated heat rate at manufacturer's rated load (kilojoules per watt hour) or, actual measured heat rate based on lower heating value of fuel as measured at actual peak load for the facility. The value of Y shall not exceed 14.4 kilojoules per watt hour, and

F = NO\textsubscript{X} emission allowance for fuel-bound nitrogen as defined in paragraph (a)(4) of this section.

(2) No owner or operator subject to the provisions of this subpart shall cause to be discharged into the atmosphere from any stationary gas turbine, any gases which contain nitrogen oxides in excess of:

\[
STD = 0.0150 \left(\frac{14.4}{Y} \right) + F
\]

View or download PDF

where:

STD = allowable ISO corrected (if required as given in §60.335(b)(1)) NO\textsubscript{X} emission concentration (percent by volume at 15 percent oxygen and on a dry basis),

Y = manufacturer's rated heat rate at manufacturer's rated peak load (kilojoules per watt hour), or actual measured heat rate based on lower heating value of fuel as measured at actual peak load for the facility. The value of Y shall not exceed 14.4 kilojoules per watt hour, and

F = NO\textsubscript{X} emission allowance for fuel-bound nitrogen as defined in paragraph (a)(4) of this section.

(3) The use of F in paragraphs (a)(1) and (2) of this section is optional. That is, the owner or operator may choose to apply a NO\textsubscript{X} allowance for fuel-bound nitrogen and determine the appropriate F-value in accordance with paragraph (a)(4) of this section or may accept an F-value of zero.

(4) If the owner or operator elects to apply a NO\textsubscript{X} emission allowance for fuel-bound nitrogen, F shall be defined according to the nitrogen content of the fuel during the most recent performance test required under §60.8 as follows:

<table>
<thead>
<tr>
<th>Fuel-bound nitrogen (percent by weight)</th>
<th>F (NO\textsubscript{X} percent by volume)</th>
</tr>
</thead>
<tbody>
<tr>
<td>N ≤ .015</td>
<td>0</td>
</tr>
<tr>
<td>0.015 < N ≤ 0.1</td>
<td>0.04 (N)</td>
</tr>
<tr>
<td>0.1 < N ≤ 0.25</td>
<td>0.004 + 0.0067(N-0.1)</td>
</tr>
<tr>
<td>N > 0.25</td>
<td>0.005</td>
</tr>
</tbody>
</table>

Where:

N = the nitrogen content of the fuel (percent by weight).

or:

Manufacturers may develop and submit to EPA custom fuel-bound nitrogen allowances for each gas turbine model they manufacture. These fuel-bound nitrogen allowances shall be substantiated with data and must be approved for use by the Administrator before the initial performance test required by §60.8. Notices of approval of custom fuel-bound nitrogen allowances will be published in the Federal Register.
(b) Electric utility stationary gas turbines with a heat input at peak load greater than 107.2 gigajoules per hour (100 million Btu/hour) based on the lower heating value of the fuel fired shall comply with the provisions of paragraph (a)(1) of this section.

(c) Stationary gas turbines with a heat input at peak load equal to or greater than 10.7 gigajoules per hour (10 million Btu/hour) but less than or equal to 107.2 gigajoules per hour (100 million Btu/hour) based on the lower heating value of the fuel fired, shall comply with the provisions of paragraph (a)(2) of this section.

(d) Stationary gas turbines with a manufacturer's rated base load at ISO conditions of 30 megawatts or less except as provided in §60.332(b) shall comply with paragraph (a)(2) of this section.

(e) Stationary gas turbines with a heat input at peak load equal to or greater than 10.7 gigajoules per hour (10 million Btu/hour) but less than or equal to 107.2 gigajoules per hour (100 million Btu/hour) based on the lower heating value of the fuel fired and that have commenced construction prior to October 3, 1982 are exempt from paragraph (a) of this section.

(f) Stationary gas turbines using water or steam injection for control of NO\textsubscript{X} emissions are exempt from paragraph (a) when ice fog is deemed a traffic hazard by the owner or operator of the gas turbine.

(g) Emergency gas turbines, military gas turbines for use in other than a garrison facility, military gas turbines installed for use as military training facilities, and fire fighting gas turbines are exempt from paragraph (a) of this section.

(h) Stationary gas turbines engaged by manufacturers in research and development of equipment for both gas turbine emission control techniques and gas turbine efficiency improvements are exempt from paragraph (a) on a case-by-case basis as determined by the Administrator.

(i) Exemptions from the requirements of paragraph (a) of this section will be granted on a case-by-case basis as determined by the Administrator in specific geographical areas where mandatory water restrictions are required by governmental agencies because of drought conditions. These exemptions will be allowed only while the mandatory water restrictions are in effect.

(j) Stationary gas turbines with a heat input at peak load greater than 107.2 gigajoules per hour that commenced construction, modification, or reconstruction between the dates of October 3, 1977, and January 27, 1982, and were required in the September 10, 1979, Federal Register (44 FR 52792) to comply with paragraph (a)(1) of this section, except electric utility stationary gas turbines, are exempt from paragraph (a) of this section.

(k) Stationary gas turbines with a heat input greater than or equal to 10.7 gigajoules per hour (10 million Btu/hour) when fired with natural gas are exempt from paragraph (a)(2) of this section when being fired with an emergency fuel.

(l) Regenerative cycle gas turbines with a heat input less than or equal to 107.2 gigajoules per hour (100 million Btu/hour) are exempt from paragraph (a) of this section.

§60.333 Standard for sulfur dioxide.

On and after the date on which the performance test required to be conducted by §60.8 is completed, every owner or operator subject to the provision of this subpart shall comply with one or the other of the following conditions:

(a) No owner or operator subject to the provisions of this subpart shall cause to be discharged into the atmosphere from any stationary gas turbine any gases which contain sulfur dioxide in excess of 0.015 percent by volume at 15 percent oxygen and on a dry basis.

(b) No owner or operator subject to the provisions of this subpart shall burn in any stationary gas turbine any fuel which contains total sulfur in excess of 0.8 percent by weight (8000 ppmw).

§60.334 Monitoring of operations.

(a) Except as provided in paragraph (b) of this section, the owner or operator of any stationary gas turbine subject to the provisions of this subpart and using water or steam injection to control NO\textsubscript{X} emissions shall install, calibrate, maintain and operate a continuous monitoring system to monitor and record the fuel consumption and the ratio of water or steam to fuel being fired in the turbine.
(b) The owner or operator of any stationary gas turbine that commenced construction, reconstruction or modification after October 3, 1977, but before July 8, 2004, and which uses water or steam injection to control NO\textsubscript{X} emissions may, as an alternative to operating the continuous monitoring system described in paragraph (a) of this section, install, certify, maintain, operate, and quality-assure a continuous emission monitoring system (CEMS) consisting of NO\textsubscript{X} and O\textsubscript{2} monitors. As an alternative, a CO\textsubscript{2} monitor may be used to adjust the measured NO\textsubscript{X} concentrations to 15 percent O\textsubscript{2} by either converting the CO\textsubscript{2} hourly averages to equivalent O\textsubscript{2} concentrations using Equation F-14a or F-14b in appendix F to part 75 of this chapter and making the adjustments to 15 percent O\textsubscript{2}, or by using the CO\textsubscript{2} readings directly to make the adjustments, as described in Method 20. If the option to use a CEMS is chosen, the CEMS shall be installed, certified, maintained and operated as follows:

1. Each CEMS must be installed and certified according to PS 2 and 3 (for diluent) of 40 CFR part 60, appendix B, except the 7-day calibration drift is based on unit operating days, not calendar days. Appendix F, Procedure 1 is not required. The relative accuracy test audit (RATA) of the NO\textsubscript{X} and diluent monitors may be performed individually or on a combined basis, i.e., the relative accuracy tests of the CEMS may be performed either:

 i. On a ppm basis (for NO\textsubscript{X}) and a percent O\textsubscript{2} basis for oxygen; or

 ii. On a ppm at 15 percent O\textsubscript{2} basis; or

 iii. On a ppm basis (for NO\textsubscript{X}) and a percent CO\textsubscript{2} basis (for a CO\textsubscript{2} monitor that uses the procedures in Method 20 to correct the NO\textsubscript{X} data to 15 percent O\textsubscript{2}).

2. As specified in §60.13(e)(2), during each full unit operating hour, each monitor must complete a minimum of one cycle of operation (sampling, analyzing, and data recording) for each 15-minute quadrant of the hour, to validate the hour. For partial unit operating hours, at least one valid data point must be obtained for each quadrant of the hour in which the unit operates. For unit operating hours in which required quality assurance and maintenance activities are performed on the CEMS, a minimum of two valid data points (one in each of two quadrants) are required to validate the hour.

3. For purposes of identifying excess emissions, CEMS data must be reduced to hourly averages as specified in §60.13(h).

 i. For each unit operating hour in which a valid hourly average, as described in paragraph (b)(2) of this section, is obtained for both NO\textsubscript{X} and diluent, the data acquisition and handling system must calculate and record the hourly NO\textsubscript{X} emissions in the units of the applicable NO\textsubscript{X} emission standard under §60.332(a), i.e., percent NO\textsubscript{X} by volume, dry basis, corrected to 15 percent O\textsubscript{2} and International Organization for Standardization (ISO) standard conditions (if required as given in §60.335(b)(1)). For any hour in which the hourly average O\textsubscript{2} concentration exceeds 19.0 percent O\textsubscript{2}, a diluent cap value of 19.0 percent O\textsubscript{2} may be used in the emission calculations.

 ii. A worst case ISO correction factor may be calculated and applied using historical ambient data. For the purpose of this calculation, substitute the maximum humidity of ambient air (H\textsubscript{o}), minimum ambient temperature (T\textsubscript{a}), and minimum combustor inlet absolute pressure (P\textsubscript{o}) into the ISO correction equation.

 iii. If the owner or operator has installed a NO\textsubscript{X} CEMS to meet the requirements of part 75 of this chapter, and is continuing to meet the ongoing requirements of part 75 of this chapter, the CEMS may be used to meet the requirements of this section, except that the missing data substitution methodology provided for at 40 CFR part 75, subpart D, is not required for purposes of identifying excess emissions. Instead, periods of missing CEMS data are to be reported as monitor downtime in the excess emissions and monitoring performance report required in §60.7(c).

(c) For any turbine that commenced construction, reconstruction or modification after October 3, 1977, but before July 8, 2004, and which does not use steam or water injection to control NO\textsubscript{X} emissions, the owner or operator may, but is not required to, for purposes of determining excess emissions, use a CEMS that meets the requirements of paragraph (b) of this section. Also, if the owner or operator has previously submitted and received EPA, State, or local permitting authority approval of a procedure for monitoring compliance with the applicable NO\textsubscript{X} emission limit under §60.332, that approved procedure may continue to be used.

(d) The owner or operator of any new turbine constructed after July 8, 2004, and which uses water or steam injection to control NO\textsubscript{X} emissions may elect to use either the requirements in paragraph (a) of this section for continuous water or steam to fuel ratio monitoring or may use a NO\textsubscript{X} CEMS installed, certified, operated, maintained, and quality-assured as described in paragraph (b) of this section.

(e) The owner or operator of any new turbine that commences construction after July 8, 2004, and which does not use water or steam injection to control NO\textsubscript{X} emissions, may, but is not required to, elect to use a NO\textsubscript{X} CEMS installed, certified, operated, maintained, and quality-assured as described in paragraph (b) of this section. Other acceptable monitoring
approaches include periodic testing approved by EPA or the State or local permitting authority or continuous parameter monitoring as described in paragraph (f) of this section.

(f) The owner or operator of a new turbine that commences construction after July 8, 2004, which does not use water or steam injection to control NO\textsubscript{X} emissions may, but is not required to, perform continuous parameter monitoring as follows:

(1) For a diffusion flame turbine without add-on selective catalytic reduction controls (SCR), the owner or operator shall define at least four parameters indicative of the unit’s NO\textsubscript{X} formation characteristics and shall monitor these parameters continuously.

(2) For any lean premix stationary combustion turbine, the owner or operator shall continuously monitor the appropriate parameters to determine whether the unit is operating in low-NO\textsubscript{X} mode.

(3) For any turbine that uses SCR to reduce NO\textsubscript{X} emissions, the owner or operator shall continuously monitor appropriate parameters to verify the proper operation of the emission controls.

(4) For affected units that are also regulated under part 75 of this chapter, if the owner or operator elects to monitor NO\textsubscript{X} emission rate using the methodology in appendix E to part 75 of this chapter, or the low mass emissions methodology in §75.19 of this chapter, the requirements of this paragraph (f) may be met by performing the parametric monitoring described in section 2.3 of appendix E and section 1.3.6 of appendix B to part 75 of this chapter.

(g) The steam or water to fuel ratio or other parameters that are continuously monitored as described in paragraphs (a), (d) or (f) of this section shall be monitored during the performance test required under §60.8, to establish acceptable values and ranges. The owner or operator may supplement the performance test data with engineering analyses, design specifications, manufacturer’s recommendations and other relevant information to define the acceptable parametric ranges more precisely. The owner or operator shall develop and keep on-site a parameter monitoring plan which explains the procedures used to document proper operation of the NO\textsubscript{X} emission controls. The plan shall include the parameter(s) monitored and the acceptable range(s) of the parameter(s) as well as the basis for designating the parameter(s) and acceptable range(s). Any supplemental data such as engineering analyses, design specifications, manufacturer’s recommendations and other relevant information shall be included in the monitoring plan. For affected units that are also subject to part 75 of this chapter and that use the low mass emissions methodology in §75.19 of this chapter or the NO\textsubscript{X} emission measurement methodology in appendix E to part 75, the owner or operator may meet the requirements of this paragraph by developing and keeping on-site (or at a central location for unmanned facilities) a quality-assurance plan, as described in §75.19 (e)(5) or in section 2.3 of appendix E and section 1.3.6 of appendix B to part 75 of this chapter.

(h) The owner or operator of any stationary gas turbine subject to the provisions of this subpart:

(1) Shall monitor the total sulfur content of the fuel being fired in the turbine, except as provided in paragraph (h)(3) of this section. The sulfur content of the fuel must be determined using total sulfur methods described in §60.335(b)(10). Alternatively, if the total sulfur content of the gaseous fuel during the most recent performance test was less than 0.4 weight percent (4000 ppmw), ASTM D4084-82, 94, D5504-01, D6228-98, or Gas Processors Association Standard 2377-86 (all of which are incorporated by reference-see §60.17), which measure the major sulfur compounds may be used; and

(2) Shall monitor the nitrogen content of the fuel combusted in the turbine, if the owner or operator claims an allowance for fuel bound nitrogen (i.e., if an F-value greater than zero is being or will be used by the owner or operator to calculate STD in §60.332). The nitrogen content of the fuel shall be determined using methods described in §60.335(b)(9) or an approved alternative.

(3) Notwithstanding the provisions of paragraph (h)(1) of this section, the owner or operator may elect not to monitor the total sulfur content of the gaseous fuel combusted in the turbine, if the gaseous fuel is demonstrated to meet the definition of natural gas in §60.331(u), regardless of whether an existing custom schedule approved by the administrator for subpart GG requires such monitoring. The owner or operator shall use one of the following sources of information to make the required demonstration:

(i) The gas quality characteristics in a current, valid purchase contract, tariff sheet or transportation contract for the gaseous fuel, specifying that the maximum total sulfur content of the fuel is 20.0 grains/100 scf or less; or

(ii) Representative fuel sampling data which show that the sulfur content of the gaseous fuel does not exceed 20 grains/100 scf. At a minimum, the amount of fuel sampling data specified in section 2.3.1.4 or 2.3.2.4 of appendix D to part 75 of this chapter is required.

(4) For any turbine that commenced construction, reconstruction or modification after October 3, 1977, but before July 8, 2004, and for which a custom fuel monitoring schedule has previously been approved, the owner or operator may, without submitting a special petition to the Administrator, continue monitoring on this schedule.
(i) The frequency of determining the sulfur and nitrogen content of the fuel shall be as follows:

(1) **Fuel oil.** For fuel oil, use one of the total sulfur sampling options and the associated sampling frequency described in sections 2.2.3, 2.2.4.1, 2.2.4.2, and 2.2.4.3 of appendix D to part 75 of this chapter (i.e., flow proportional sampling, daily sampling, sampling from the unit's storage tank after each addition of fuel to the tank, or sampling each delivery prior to combining it with fuel oil already in the intended storage tank). If an emission allowance is being claimed for fuel-bound nitrogen, the nitrogen content of the oil shall be determined and recorded once per unit operating day.

(2) **Gaseous fuel.** Any applicable nitrogen content value of the gaseous fuel shall be determined and recorded once per unit operating day. For owners and operators that elect not to demonstrate sulfur content using options in paragraph (h)(3) of this section, and for which the fuel is supplied without intermediate bulk storage, the sulfur content value of the gaseous fuel shall be determined and recorded once per unit operating day.

(3) **Custom schedules.** Notwithstanding the requirements of paragraph (i)(2) of this section, operators or fuel vendors may develop custom schedules for determination of the total sulfur content of gaseous fuels, based on the design and operation of the affected facility and the characteristics of the fuel supply. Except as provided in paragraphs (i)(3)(i) and (i)(3)(ii) of this section, custom schedules shall be substantiated with data and shall be approved by the Administrator before they can be used to comply with the standard in §60.333.

(i) The two custom sulfur monitoring schedules set forth in paragraphs (i)(3)(i)(A) through (D) and in paragraph (i)(3)(ii) of this section are acceptable, without prior Administrative approval:

(A) The owner or operator shall obtain daily total sulfur content measurements for 30 consecutive unit operating days, using the applicable methods specified in this subpart. Based on the results of the 30 daily samples, the required frequency for subsequent monitoring of the fuel's total sulfur content shall be as specified in paragraph (i)(3)(i)(B), (C), or (D) of this section, as applicable.

(B) If none of the 30 daily measurements of the fuel's total sulfur content exceeds 0.4 weight percent (4000 ppmw), subsequent sulfur content monitoring may be performed at 12 month intervals. If any of the samples taken at 12-month intervals has a total sulfur content between 0.4 and 0.8 weight percent (4000 and 8000 ppmw), follow the procedures in paragraph (i)(3)(i)(C) of this section. If any measurement exceeds 0.8 weight percent (8000 ppmw), follow the procedures in paragraph (i)(3)(i)(D) of this section.

(C) If at least one of the 30 daily measurements of the fuel's total sulfur content is between 0.4 and 0.8 weight percent (4000 and 8000 ppmw), but none exceeds 0.8 weight percent (8000 ppmw), then:

1. Collect and analyze a sample every 30 days for three months. If any sulfur content measurement exceeds 0.8 weight percent (8000 ppmw), follow the procedures in paragraph (i)(3)(i)(D) of this section. Otherwise, follow the procedures in paragraph (i)(3)(i)(C)(2) of this section.

2. Begin monitoring at 6-month intervals for 12 months. If any sulfur content measurement exceeds 0.8 weight percent (8000 ppmw), follow the procedures in paragraph (i)(3)(i)(D) of this section. Otherwise, follow the procedures in paragraph (i)(3)(i)(C) of this section.

3. Begin monitoring at 12-month intervals. If any sulfur content measurement exceeds 0.8 weight percent (8000 ppmw), follow the procedures in paragraph (i)(3)(i)(D) of this section. Otherwise, continue to monitor at this frequency.

(D) If a sulfur content measurement exceeds 0.8 weight percent (8000 ppmw), immediately begin daily monitoring according to paragraph (i)(3)(i)(A) of this section. Daily monitoring shall continue until 30 consecutive daily samples, each having a sulfur content no greater than 0.8 weight percent (8000 ppmw), are obtained. At that point, the applicable procedures of paragraph (i)(3)(i)(B) or (C) of this section shall be followed.

(ii) The owner or operator may use the data collected from the 720-hour sulfur sampling demonstration described in section 2.3.6 of appendix D to part 75 of this chapter to determine a custom sulfur sampling schedule, as follows:

(A) If the maximum fuel sulfur content obtained from the 720 hourly samples does not exceed 20 grains/100 scf (i.e., the maximum total sulfur content of natural gas as defined in §60.331(u)), no additional monitoring of the sulfur content of the gas is required, for the purposes of this subpart.

(B) If the maximum fuel sulfur content obtained from any of the 720 hourly samples exceeds 20 grains/100 scf, but none of the sulfur content values (when converted to weight percent sulfur) exceeds 0.4 weight percent (4000 ppmw), then the minimum required sampling frequency shall be one sample at 12 month intervals.

(C) If any sample result exceeds 0.4 weight percent sulfur (4000 ppmw), but none exceeds 0.8 weight percent sulfur (8000 ppmw), follow the provisions of paragraph (i)(3)(i)(C) of this section.
(D) If the sulfur content of any of the 720 hourly samples exceeds 0.8 weight percent (8000 ppmw), follow the provisions of paragraph (i)(3)(i)(D) of this section.

(j) For each affected unit that elects to continuously monitor parameters or emissions, or to periodically determine the fuel sulfur content or fuel nitrogen content under this subpart, the owner or operator shall submit reports of excess emissions and monitor downtime, in accordance with §60.7(c). Excess emissions shall be reported for all periods of unit operation, including startup, shutdown and malfunction. For the purpose of reports required under §60.7(c), periods of excess emissions and monitor downtime that shall be reported are defined as follows:

(1) Nitrogen oxides.

(i) For turbines using water or steam to fuel ratio monitoring:

(A) An excess emission shall be any unit operating hour for which the average steam or water to fuel ratio, as measured by the continuous monitoring system, falls below the acceptable steam or water to fuel ratio needed to demonstrate compliance with §60.332, as established during the performance test required in §60.8. Any unit operating hour in which no water or steam is injected into the turbine shall also be considered an excess emission.

(B) A period of monitor downtime shall be any unit operating hour in which water or steam is injected into the turbine, but the essential parametric data needed to determine the steam or water to fuel ratio are unavailable or invalid.

(C) Each report shall include the average steam or water to fuel ratio, average fuel consumption, ambient conditions (temperature, pressure, and humidity), gas turbine load, and (if applicable) the nitrogen content of the fuel during each excess emission. You do not have to report ambient conditions if you opt to use the worst case ISO correction factor as specified in §60.334(b)(3)(ii), or if you are not using the ISO correction equation under the provisions of §60.335(b)(1).

(ii) If the owner or operator elects to take an emission allowance for fuel bound nitrogen, then excess emissions and periods of monitor downtime are as described in paragraphs (j)(1)(ii)(A) and (B) of this section.

(A) An excess emission shall be the period of time during which the fuel-bound nitrogen (N) is greater than the value measured during the performance test required in §60.8 and used to determine the allowance. The excess emission begins on the date and hour of the sample which shows that N is greater than the performance test value, and ends with the date and hour of a subsequent sample which shows a fuel nitrogen content less than or equal to the performance test value.

(B) A period of monitor downtime begins when a required sample is not taken by its due date. A period of monitor downtime also begins on the date and hour that a required sample is taken, if invalid results are obtained. The period of monitor downtime ends on the date and hour of the next valid sample.

(iii) For turbines using NOX and diluent CEMS:

(A) An hour of excess emissions shall be any unit operating hour in which the 4-hour rolling average NOX concentration exceeds the applicable emission limit in §60.332(a)(1) or (2). For the purposes of this subpart, a “4-hour rolling average NOX concentration” is the arithmetic average of the average NOX concentration measured by the CEMS for a given hour (corrected to 15 percent O2 and, if required under §60.335(b)(1), to ISO standard conditions) and the three unit operating hour average NOX concentrations immediately preceding that unit operating hour.

(B) A period of monitor downtime shall be any unit operating hour in which sufficient data are not obtained to validate the hour, for either NOX concentration or diluent (or both).

(C) Each report shall include the ambient conditions (temperature, pressure, and humidity) at the time of the excess emission period and (if the owner or operator has claimed an emission allowance for fuel bound nitrogen) the nitrogen content of the fuel during the period of excess emissions. You do not have to report ambient conditions if you opt to use the worst case ISO correction factor as specified in §60.334(b)(3)(ii), or if you are not using the ISO correction equation under the provisions of §60.335(b)(1).

(iv) For owners or operators that elect, under paragraph (f) of this section, to monitor combustion parameters or parameters that document proper operation of the NOX emission controls:

(A) An excess emission shall be a 4-hour rolling unit operating hour average in which any monitored parameter does not achieve the target value or is outside the acceptable range defined in the parameter monitoring plan for the unit.

(B) A period of monitor downtime shall be a unit operating hour in which any of the required parametric data are either not recorded or are invalid.
(2) Sulfur dioxide. If the owner or operator is required to monitor the sulfur content of the fuel under paragraph (h) of this section:

(i) For samples of gaseous fuel and for oil samples obtained using daily sampling, flow proportional sampling, or sampling from the unit’s storage tank, an excess emission occurs each unit operating hour included in the period beginning on the date and hour of any sample for which the sulfur content of the fuel being fired in the gas turbine exceeds 0.8 weight percent and ending on the date and hour that a subsequent sample is taken that demonstrates compliance with the sulfur limit.

(ii) If the option to sample each delivery of fuel oil has been selected, the owner or operator shall immediately switch to one of the other oil sampling options (i.e., daily sampling, flow proportional sampling, or sampling from the unit’s storage tank) if the sulfur content of a delivery exceeds 0.8 weight percent. The owner or operator shall continue to use one of the other sampling options until all of the oil from the delivery has been combusted, and shall evaluate excess emissions according to paragraph (j) (2)(i) of this section. When all of the fuel from the delivery has been burned, the owner or operator may resume using the as-delivered sampling option.

(iii) A period of monitor downtime begins when a required sample is not taken by its due date. A period of monitor downtime also begins on the date and hour of a required sample, if invalid results are obtained. The period of monitor downtime shall include only unit operating hours, and ends on the date and hour of the next valid sample.

(3) Ice fog. Each period during which an exemption provided in §60.332(f) is in effect shall be reported in writing to the Administrator quarterly. For each period the ambient conditions existing during the period, the date and time the air pollution control system was deactivated, and the date and time the air pollution control system was reactivated shall be reported. All quarterly reports shall be postmarked by the 30th day following the end of each calendar quarter.

(4) Emergency fuel. Each period during which an exemption provided in §60.332(k) is in effect shall be included in the report required in §60.7(c). For each period, the type, reasons, and duration of the firing of the emergency fuel shall be reported.

(5) All reports required under §60.7(c) shall be postmarked by the 30th day following the end of each 6-month period.

§60.335 Test methods and procedures.

(a) The owner or operator shall conduct the performance tests required in §60.8, using either

(1) EPA Method 20,

(2) ASTM D6522-00 (incorporated by reference, see §60.17), or

(3) EPA Method 7E and either EPA Method 3 or 3A in appendix A to this part, to determine NO\textsubscript{X} and diluent concentration.

(4) Sampling traverse points are to be selected following Method 20 or Method 1, (non-particulate procedures) and sampled for equal time intervals. The sampling shall be performed with a traversing single-hole probe or, if feasible, with a stationary multi-hole probe that samples each of the points sequentially. Alternatively, a multi-hole probe designed and documented to sample equal volumes from each hole may be used to sample simultaneously at the required points.

(5) Notwithstanding paragraph (a)(4) of this section, the owner or operator may test at few points than are specified in Method 1 or Method 20 if the following conditions are met:

(i) You may perform a stratification test for NO\textsubscript{X} and diluent pursuant to

(A) [Reserved]

(B) The procedures specified in section 6.5.6.1(a) through (e) appendix A to part 75 of this chapter.

(ii) Once the stratification sampling is completed, the owner or operator may use the following alternative sample point selection criteria for the performance test:

(A) If each of the individual traverse point NO\textsubscript{X} concentrations, normalized to 15 percent O\textsubscript{2}, is within 10 percent of the mean normalized concentration for all traverse points, then you may use 3 points (located either 16.7, 50.0, and 83.3 percent of the way across the stack or duct, or, for circular stacks or ducts greater than 2.4 meters (7.8 feet) in diameter, at 0.4, 1.2, and
2.0 meters from the wall). The 3 points shall be located along the measurement line that exhibited the highest average normalized NO\textsubscript{X} concentration during the stratification test; or

(B) If each of the individual traverse point NO\textsubscript{X} concentrations, normalized to 15 percent O\textsubscript{2}, is within 5 percent of the mean normalized concentration for all traverse points, then you may sample at a single point, located at least 1 meter from the stack wall or at the stack centroid.

(6) Other acceptable alternative reference methods and procedures are given in paragraph (c) of this section.

(b) The owner or operator shall determine compliance with the applicable nitrogen oxides emission limitation in §60.332 and shall meet the performance test requirements of §60.8 as follows:

1. For each run of the performance test, the mean nitrogen oxides emission concentration (NO\textsubscript{Xo}) corrected to 15 percent O\textsubscript{2} shall be corrected to ISO standard conditions using the following equation. Notwithstanding this requirement, use of the ISO correction equation is optional for: Lean premix stationary combustion turbines; units used in association with heat recovery steam generators (HRSG) equipped with duct burners; and units equipped with add-on emission control devices:

\[
\text{NO}_X = \left(\text{NO}_{Xo}(P_r/P_o)^{0.5} e^{19 \left(\frac{H_o-0.00633}{288°K/T_a}\right)^{1.53}}\right)
\]

Where:

\(\text{NO}_X\) = emission concentration of NO\textsubscript{X} at 15 percent O\textsubscript{2} and ISO standard ambient conditions, ppm by volume, dry basis,

\(\text{NO}_{Xo}\) = mean observed NO\textsubscript{X} concentration, ppm by volume, dry basis, at 15 percent O\textsubscript{2},

\(P_r\) = reference combustor inlet absolute pressure at 101.3 kilopascals ambient pressure. Alternatively, you may use 760 mm Hg (29.92 in Hg),

\(P_o\) = observed combustor inlet absolute pressure at test, mm Hg. Alternatively, you may use the barometric pressure for the date of the test,

\(H_o\) = observed humidity of ambient air, g H\textsubscript{2}O/g air,

\(e\) = transcendental constant, 2.718,

\(T_a\) = ambient temperature, °K.

2. The 3-run performance test required by §60.8 must be performed within 5 percent at 30, 50, 75, and 90-to-100 percent of peak load or at four evenly-spaced load points in the normal operating range of the gas turbine, including the minimum point in the operating range and 90-to-100 percent of peak load, or at the highest achievable load point if 90-to-100 percent of peak load cannot be physically achieved in practice. If the turbine combusts both oil and gas as primary or backup fuels, separate performance testing is required for each fuel. Notwithstanding these requirements, performance testing is not required for any emergency fuel (as defined in §60.331).

3. For a combined cycle turbine system with supplemental heat (duct burner), the owner or operator may elect to measure the turbine NO\textsubscript{X} emissions after the duct burner rather than directly after the turbine. If the owner or operator elects to use this alternative sampling location, the applicable NO\textsubscript{X} emission limit in §60.332 for the combustion turbine must still be met.

4. If water or steam injection is used to control NO\textsubscript{X} with no additional post-combustion NO\textsubscript{X} control and the owner or operator chooses to monitor the steam or water to fuel ratio in accordance with §60.334(a), then that monitoring system must be operated concurrently with each EPA Method 20, ASTM D6522-00 (incorporated by reference, see §60.17), or EPA Method 7E run and shall be used to determine the fuel consumption and the steam or water to fuel ratio necessary to comply with the applicable §60.332 NO\textsubscript{X} emission limit.

5. If the owner operator elects to claim an emission allowance for fuel bound nitrogen as described in §60.332, then concurrently with each reference method run, a representative sample of the fuel used shall be collected and analyzed, following the applicable procedures described in §60.335(b)(9). These data shall be used to determine the maximum fuel nitrogen content for which the established water (or steam) to fuel ratio will be valid.

6. If the owner or operator elects to install a CEMS, the performance evaluation of the CEMS may either be conducted separately (as described in paragraph (b)(7) of this section) or as part of the initial performance test of the affected unit.

7. If the owner or operator elects to install and certify a NO\textsubscript{X} CEMS under §60.334(e), then the initial performance test required under §60.8 may be done in the following alternative manner:

 (i) Perform a minimum of 9 reference method runs, with a minimum time per run of 21 minutes, at a single load level, between 90 and 100 percent of peak (or the highest physically achievable) load.
(ii) Use the test data both to demonstrate compliance with the applicable NO\textsubscript{X} emission limit under §60.332 and to provide the required reference method data for the RATA of the CEMS described under §60.334(b).

(iii) The requirement to test at three additional load levels is waived.

(8) If the owner or operator elects under §60.334(f) to monitor combustion parameters or parameters indicative of proper operation of NO\textsubscript{X} emission controls, the appropriate parameters shall be continuously monitored and recorded during each run of the initial performance test, to establish acceptable operating ranges, for purposes of the parameter monitoring plan for the affected unit, as specified in §60.334(g).

(9) To determine the fuel bound nitrogen content of fuel being fired (if an emission allowance is claimed for fuel bound nitrogen), the owner or operator may use equipment and procedures meeting the requirements of:

(i) For liquid fuels, ASTM D2597-94 (Reapproved 1999), D6366-99, D4629-02, D5762-02 (all of which are incorporated by reference, see §60.17); or

(ii) For gaseous fuels, shall use analytical methods and procedures that are accurate to within 5 percent of the instrument range and are approved by the Administrator.

(10) If the owner or operator is required under §60.334(i)(1) or (3) to periodically determine the sulfur content of the fuel combusted in the turbine, a minimum of three fuel samples shall be collected during the performance test. Analyze the samples for the total sulfur content of the fuel using:

(i) For liquid fuels, ASTM D129-00, D2622-98, D4294-02, D1266-98, D5453-00 or D1552-01 (all of which are incorporated by reference, see §60.17); or

(ii) For gaseous fuels, ASTM D1072-80, 90 (Reapproved 1994); D3246-81, 92, 96; D4468-85 (Reapproved 2000); or D6667-01 (all of which are incorporated by reference, see §60.17). The applicable ranges of some ASTM methods mentioned above are not adequate to measure the levels of sulfur in some fuel gases. Dilution of samples before analysis (with verification of the dilution ratio) may be used, subject to the prior approval of the Administrator.

(11) The fuel analyses required under paragraphs (b)(9) and (b)(10) of this section may be performed by the owner or operator, a service contractor retained by the owner or operator, the fuel vendor, or any other qualified agency.

(c) The owner or operator may use the following as alternatives to the reference methods and procedures specified in this section:

(1) Instead of using the equation in paragraph (b)(1) of this section, manufacturers may develop ambient condition correction factors to adjust the nitrogen oxides emission level measured by the performance test as provided in §60.8 to ISO standard day conditions.

Appendix C
ADEQ CEM Systems Conditions
CONTINUOUS EMISSION MONITORING SYSTEMS
CONDITIONS

Revised September 2013
PREAMBLE

These conditions are intended to outline the requirements for facilities required to operate Continuous Emission Monitoring Systems/Continuous Opacity Monitoring Systems (CEMS/COMS). Generally there are three types of sources required to operate CEMS/COMS:

1. CEMS/COMS required by 40 CFR Part 60 or 63,
2. CEMS required by 40 CFR Part 75,
3. CEMS/COMS required by ADEQ permit for reasons other than Part 60, 63 or 75.

These CEMS/COMS conditions are not intended to supercede Part 60, 63 or 75 requirements.

- Only CEMS/COMS in the third category (those required by ADEQ permit for reasons other than Part 60, 63, or 75) shall comply with SECTION II, MONITORING REQUIREMENTS and SECTION IV, QUALITY ASSURANCE/QUALITY CONTROL.

- All CEMS/COMS shall comply with Section III, NOTIFICATION AND RECORDKEEPING.
SECTION I

DEFINITIONS

Continuous Emission Monitoring System (CEMS) - The total equipment required for the determination of a gas concentration and/or emission rate so as to include sampling, analysis and recording of emission data.

Continuous Opacity Monitoring System (COMS) - The total equipment required for the determination of opacity as to include sampling, analysis and recording of emission data.

Calibration Drift (CD) - The difference in the CEMS output reading from the established reference value after a stated period of operation during which no unscheduled maintenance, repair, or adjustments took place.

Back-up CEMS (Secondary CEMS) - A CEMS with the ability to sample, analyze and record stack pollutant to determine gas concentration and/or emission rate. This CEMS is to serve as a back-up to the primary CEMS to minimize monitor downtime.

Excess Emissions - Any period in which the emissions exceed the permit limits.

Monitor Downtime - Any period during which the CEMS/COMS is unable to sample, analyze and record a minimum of four evenly spaced data points over an hour, except during one daily zero-span check during which two data points per hour are sufficient.

Out-of-Control Period - Begins with the time corresponding to the completion of the fifth, consecutive, daily CD check with a CD in excess of two times the allowable limit, or the time corresponding to the completion of the daily CD check preceding the daily CD check that results in a CD in excess of four times the allowable limit and the time corresponding to the completion of the sampling for the Relative Accuracy Test Audit (RATA),
Relative Accuracy Audit (RAA), or Cylinder Gas Audit (CGA) which exceeds the limits outlined in Section IV. Out-of-Control Period ends with the time corresponding to the completion of the CD check following corrective action with the results being within the allowable CD limit or the completion of the sampling of the subsequent successful RATA, RAA, or CGA.

Primary CEMS - The main reporting CEMS with the ability to sample, analyze, and record stack pollutant to determine gas concentration and/or emission rate.

Relative Accuracy (RA) - The absolute mean difference between the gas concentration or emission rate determined by the CEMS and the value determined by the reference method plus the 2.5 percent error confidence coefficient of a series of tests divided by the mean of the reference method tests of the applicable emission limit.

Span Value – The upper limit of a gas concentration measurement range.
Only CEMS/COMS required by ADEQ permit for reasons other than Part 60, 63 or 75 shall comply with this section.

A. For new sources, the installation date for the CEMS/COMS shall be no later than thirty (30) days from the date of start-up of the source.

B. For existing sources, the installation date for the CEMS/COMS shall be no later than sixty (60) days from the issuance of the permit unless the permit requires a specific date.

C. Within sixty (60) days of installation of a CEMS/COMS, a performance specification test (PST) must be completed. PST's are defined in 40 CFR, Part 60, Appendix B, PS 1-9. The Department may accept alternate PST's for pollutants not covered by Appendix B on a case-by-case basis. Alternate PST's shall be approved, in writing, by the ADEQ CEM Coordinator prior to testing.

D. Each CEMS/COMS shall have, as a minimum, a daily zero-span check. The zero-span shall be adjusted whenever the 24-hour zero or 24-hour span drift exceeds two times the limits in the applicable performance specification in 40 CFR, Part 60, Appendix B. Before any adjustments are made to either the zero or span drifts measured at the 24-hour interval, the excess zero and span drifts measured must be quantified and recorded.

E. All CEMS/COMS shall be in continuous operation and shall meet minimum frequency of operation requirements of 95% up-time for each quarter for each pollutant measured. Percent of monitor down-time is calculated by dividing the total minutes the monitor is not in operation by the total time in the calendar quarter and multiplying by one hundred. Failure to maintain operation time shall constitute a violation of the CEMS conditions.
F. Percent of excess emissions are calculated by dividing the total minutes of excess emissions by the total time the source operated and multiplying by one hundred. Failure to maintain compliance may constitute a violation of the CEMS conditions.

G. All CEMS measuring emissions shall complete a minimum of one cycle of operation (sampling, analyzing, and data recording) for each successive fifteen minute period unless more cycles are required by the permit. For each CEMS, one-hour averages shall be computed from four or more data points equally spaced over each one hour period unless more data points are required by the permit.

H. All COMS shall complete a minimum of one cycle of sampling and analyzing for each successive 10-second period and one cycle of data recording for each successive 6-minute period.

I. When the pollutant from a single affected facility is released through more than one point, a CEMS/COMS shall be installed on each point unless installation of fewer systems is approved, in writing, by the ADEQ CEM Coordinator. When more than one CEM/COM is used to monitor emissions from one affected facility the owner or operator shall report the results as required from each CEMS/COMS.
SECTION III

NOTIFICATION AND RECORD KEEPING

** All CEMS/COMS shall comply with this section.

A. When requested to do so by an owner or operator, the ADEQ CEM Coordinator will review plans for installation or modification for the purpose of providing technical advice to the owner or operator.

B. Each facility which operates a CEMS/COMS shall notify the ADEQ CEM Coordinator of the date for which the demonstration of the CEMS/COMS performance will commence (i.e. PST, RATA, RAA, CGA). Notification shall be received in writing no less than 15 business days prior to testing. Performance test results shall be submitted to the Department within thirty days after completion of testing.

C. Each facility which operates a CEMS/COMS shall maintain records of the occurrence and duration of start up/shut down, cleaning/soot blowing, process problems, fuel problems, or other malfunction in the operation of the affected facility which causes excess emissions. This includes any malfunction of the air pollution control equipment or any period during which a continuous monitoring device/system is inoperative.

D. Each facility required to install a CEMS/COMS shall submit an excess emission and monitoring system performance report to the Department (Attention: Air Division, CEM Coordinator) at least quarterly, unless more frequent submittals are warranted to assess the compliance status of the facility. Quarterly reports shall be postmarked no later than the 30th day of the month following the end of each calendar quarter.
E. All excess emissions shall be reported in terms of the applicable standard. Each report shall be submitted on ADEQ Quarterly Excess Emission Report Forms. Alternate forms may be used with prior written approval from the Department.

F. Each facility which operates a CEMS/COMS must maintain on site a file of CEMS/COMS data including all raw data, corrected and adjusted, repair logs, calibration checks, adjustments, and test audits. This file must be retained for a period of at least five years, and is required to be maintained in such a condition that it can easily be audited by an inspector.

G. Quarterly reports shall be used by the Department to determine compliance with the permit.
SECTION IV

QUALITY ASSURANCE/QUALITY CONTROL

** Only CEMS/COMS required by ADEQ permit for reasons other than Part 60, 63 or 75 shall comply with this section.

A. For each CEMS/COMS a Quality Assurance/Quality Control (QA/QC) plan shall be submitted to the Department (Attn.: Air Division, CEM Coordinator). CEMS quality assurance procedures are defined in 40 CFR, Part 60, Appendix F. This plan shall be submitted within 180 days of the CEMS/COMS installation. A QA/QC plan shall consist of procedure and practices which assures acceptable level of monitor data accuracy, precision, representativeness, and availability.

B. The submitted QA/QC plan for each CEMS/COMS shall not be considered as accepted until the facility receives a written notification of acceptance from the Department.

C. Facilities responsible for one, or more, CEMS/COMS used for compliance monitoring shall meet these minimum requirements and are encouraged to develop and implement a more extensive QA/QC program, or to continue such programs where they already exist. Each QA/QC program must include written procedures which should describe in detail, complete, step-by-step procedures and operations for each of the following activities:

1. Calibration of CEMS/COMS
 a. Daily calibrations (including the approximate time(s) that the daily zero and span drifts will be checked and the time required to perform these checks and return to stable operation)

2. Calibration drift determination and adjustment of CEMS/COMS
a. Out-of-control period determination
b. Steps of corrective action

3. Preventive maintenance of CEMS/COMS
a. CEMS/COMS information
 1) Manufacture
 2) Model number
 3) Serial number
b. Scheduled activities (check list)
c. Spare part inventory

4. Data recording, calculations, and reporting
5. Accuracy audit procedures including sampling and analysis methods
6. Program of corrective action for malfunctioning CEMS/COMS

D. A Relative Accuracy Test Audit (RATA), shall be conducted at least once every four
 calendar quarters. A Relative Accuracy Audit (RAA), or a Cylinder Gas Audit (CGA),
 may be conducted in the other three quarters but in no more than three quarters in
 succession. The RATA should be conducted in accordance with the applicable test
 procedure in 40 CFR Part 60 Appendix A and calculated in accordance with the applicable
 performance specification in 40 CFR Part 60 Appendix B. CGA’s and RAA’s should be
 conducted and the data calculated in accordance with the procedures outlined on 40 CFR
 Part 60 Appendix F.
 If alternative testing procedures or methods of calculation are to be used in the
 RATA, RAA or CGA audits prior authorization must be obtained from the
 ADEQ CEM Coordinator.

E. Criteria for excessive audit inaccuracy.
RATA

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>All Pollutants except Carbon Monoxide</td>
<td>> 20% Relative Accuracy</td>
</tr>
<tr>
<td>Carbon Monoxide</td>
<td>> 10% Relative Accuracy</td>
</tr>
<tr>
<td>All Pollutants except Carbon Monoxide</td>
<td>> 10% of the Applicable Standard</td>
</tr>
<tr>
<td>Carbon Monoxide</td>
<td>> 5% of the Applicable Standard</td>
</tr>
<tr>
<td>Diluent (O₂ & CO₂)</td>
<td>> 1.0 % O₂ or CO₂</td>
</tr>
<tr>
<td>Flow</td>
<td>> 20% Relative Accuracy</td>
</tr>
</tbody>
</table>

CGA

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diluent (O₂ & CO₂)</td>
<td>> 15% of average audit value or 5 ppm difference</td>
</tr>
</tbody>
</table>

RAA

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diluent (O₂ & CO₂)</td>
<td>> 15% of the three run average or > 7.5 % of the applicable standard</td>
</tr>
</tbody>
</table>
F. If either the zero or span drift results exceed two times the applicable drift specification in 40 CFR, Part 60, Appendix B for five consecutive, daily periods, the CEMS is out-of-control. If either the zero or span drift results exceed four times the applicable drift specification in Appendix B during a calibration drift check, the CEMS is out-of-control. If the CEMS exceeds the audit inaccuracies listed above, the CEMS is out-of-control. If a CEMS is out-of-control, the data from that out-of-control period is not counted towards meeting the minimum data availability as required and described in the applicable subpart. The end of the out-of-control period is the time corresponding to the completion of the successful daily zero or span drift or completion of the successful CGA, RAA or RATA.

G. A back-up monitor may be placed on an emission source to minimize monitor downtime. This back-up CEMS is subject to the same QA/QC procedure and practices as the primary CEMS. The back-up CEMS shall be certified by a PST. Daily zero-span checks must be performed and recorded in accordance with standard practices. When the primary CEMS goes down, the back-up CEMS may then be engaged to sample, analyze and record the emission source pollutant until repairs are made and the primary unit is placed back in service. Records must be maintained on site when the back-up CEMS is placed in service, these records shall include at a minimum the reason the primary CEMS is out of service, the date and time the primary CEMS was out of service and the date and time the primary CEMS was placed back in service.
Appendix D
Cross State Air Pollution Rule (CSAPR) Application
Transport Rule (TR) Trading Program Title V Requirements

Description of TR Monitoring Provisions

The TR subject unit(s), and the unit-specific monitoring provisions at this source, are identified in the following table(s). These unit(s) are subject to the requirements for the TR NO\textsubscript{X} Ozone Season Trading Program.

[Complete a separate table for each TR-subject unit, with the unit ID inserted in the second row. In each unit's separate table, insert a "✓" in each applicable column for each applicable parameter to reflect the monitoring methodology used at that unit for that parameter.]

<table>
<thead>
<tr>
<th>AFIN: 70-00543</th>
<th>Date: 11/30/2016</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unit ID: Combustion Turbine 1A (SN-01)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Continuous emission monitoring system or systems (CEMS) requirements pursuant to 40 CFR part 75, subpart B (for \text{SO}_2 monitoring) and 40 CFR part 75, subpart H (for \text{NO}_x monitoring)</th>
<th>Excepted monitoring system requirements for gas- and oil-fired units pursuant to 40 CFR part 75, appendix D</th>
<th>Excepted monitoring system requirements for gas- and oil-fired peaking units pursuant to 40 CFR part 75, appendix E</th>
<th>Low Mass Emissions excepted monitoring (LME) requirements for gas- and oil-fired units pursuant to 40 CFR 75.19</th>
<th>EPA-approved alternative monitoring system requirements pursuant to 40 CFR part 75, subpart E</th>
</tr>
</thead>
<tbody>
<tr>
<td>\text{SO}_2</td>
<td>[]</td>
<td>✓</td>
<td>[]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>\text{NO}_x</td>
<td>✓</td>
<td>[]</td>
<td>[]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heat input</td>
<td>[]</td>
<td>✓</td>
<td>[]</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Combustion Turbine 1B (SN-02)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Continuous emission monitoring system or systems (CEMS) requirements pursuant to 40 CFR part 75, subpart B (for SO(_2) monitoring) and 40 CFR part 75, subpart H (for NO(_X) monitoring)</th>
<th>Excepted monitoring system requirements for gas- and oil-fired units pursuant to 40 CFR part 75, appendix D</th>
<th>Excepted monitoring system requirements for gas- and oil-fired peaking units pursuant to 40 CFR part 75, appendix E</th>
<th>Low Mass Emissions excepted monitoring (LME) requirements for gas- and oil-fired units pursuant to 40 CFR 75.19</th>
<th>EPA-approved alternative monitoring system requirements pursuant to 40 CFR part 75, subpart E</th>
</tr>
</thead>
<tbody>
<tr>
<td>SO(_2)</td>
<td>---------</td>
<td>✅</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NO(_X)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heat input</td>
<td>---------</td>
<td>✅</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Combustion Turbine 2A (SN-03)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Continuous emission monitoring system or systems (CEMS) requirements pursuant to 40 CFR part 75, subpart B (for SO(_2) monitoring) and 40 CFR part 75, subpart H (for NO(_X) monitoring)</th>
<th>Excepted monitoring system requirements for gas- and oil-fired units pursuant to 40 CFR part 75, appendix D</th>
<th>Excepted monitoring system requirements for gas- and oil-fired peaking units pursuant to 40 CFR part 75, appendix E</th>
<th>Low Mass Emissions excepted monitoring (LME) requirements for gas- and oil-fired units pursuant to 40 CFR 75.19</th>
<th>EPA-approved alternative monitoring system requirements pursuant to 40 CFR part 75, subpart E</th>
</tr>
</thead>
<tbody>
<tr>
<td>SO(_2)</td>
<td>---------</td>
<td>✅</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NO(_X)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heat input</td>
<td>---------</td>
<td>✅</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2
AFIN: 70-00543 Date: 11/30/2016

Unit ID: Combustion Turbine 2B (SN-04)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Continuous emission monitoring system or systems (CEMS) requirements pursuant to 40 CFR part 75, subpart B (for SO₂ monitoring) and 40 CFR part 75, subpart H (for NOₓ monitoring)</th>
<th>Excepted monitoring system requirements for gas- and oil-fired units pursuant to 40 CFR part 75, appendix D</th>
<th>Excepted monitoring system requirements for gas- and oil-fired peaking units pursuant to 40 CFR part 75, appendix E</th>
<th>Low Mass Emissions excepted monitoring (LME) requirements for gas- and oil-fired units pursuant to 40 CFR part 75, Appendix E</th>
<th>EPA-approved alternative monitoring system requirements pursuant to 40 CFR part 75, subpart E</th>
</tr>
</thead>
<tbody>
<tr>
<td>SO₂</td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NOₓ</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heat input</td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

AFIN: 70-00543 Date: 11/30/2016

Unit ID: Combustion Turbine 3A (SN-05)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Continuous emission monitoring system or systems (CEMS) requirements pursuant to 40 CFR part 75, subpart B (for SO₂ monitoring) and 40 CFR part 75, subpart H (for NOₓ monitoring)</th>
<th>Excepted monitoring system requirements for gas- and oil-fired units pursuant to 40 CFR part 75, appendix D</th>
<th>Excepted monitoring system requirements for gas- and oil-fired peaking units pursuant to 40 CFR part 75, appendix E</th>
<th>Low Mass Emissions excepted monitoring (LME) requirements for gas- and oil-fired units pursuant to 40 CFR part 75, Appendix E</th>
<th>EPA-approved alternative monitoring system requirements pursuant to 40 CFR part 75, subpart E</th>
</tr>
</thead>
<tbody>
<tr>
<td>SO₂</td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NOₓ</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heat input</td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Unit ID: Combustion Turbine 3B (SN-06)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Continuous emission monitoring system or systems (CEMS) requirements pursuant to 40 CFR part 75, subpart B (for SO₂ monitoring) and 40 CFR part 75, subpart H (for NOₓ monitoring)</th>
<th>Expected monitoring system requirements for gas- and oil-fired units pursuant to 40 CFR part 75, appendix D</th>
<th>Expected monitoring system requirements for gas- and oil-fired peaking units pursuant to 40 CFR part 75, appendix E</th>
<th>Low Mass Emissions excepted monitoring (LME) requirements for gas- and oil-fired units pursuant to 40 CFR 75.19</th>
<th>EPA-approved alternative monitoring system requirements pursuant to 40 CFR part 75, subpart E</th>
</tr>
</thead>
<tbody>
<tr>
<td>SO₂</td>
<td>--------</td>
<td>√</td>
<td>--------</td>
<td>--------</td>
<td></td>
</tr>
<tr>
<td>NOₓ</td>
<td>√</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td></td>
</tr>
<tr>
<td>Heat input</td>
<td>--------</td>
<td>√</td>
<td>--------</td>
<td>--------</td>
<td></td>
</tr>
</tbody>
</table>

Unit ID: Combustion Turbine 4A (SN-07)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Continuous emission monitoring system or systems (CEMS) requirements pursuant to 40 CFR part 75, subpart B (for SO₂ monitoring) and 40 CFR part 75, subpart H (for NOₓ monitoring)</th>
<th>Expected monitoring system requirements for gas- and oil-fired units pursuant to 40 CFR part 75, appendix D</th>
<th>Expected monitoring system requirements for gas- and oil-fired peaking units pursuant to 40 CFR part 75, appendix E</th>
<th>Low Mass Emissions excepted monitoring (LME) requirements for gas- and oil-fired units pursuant to 40 CFR 75.19</th>
<th>EPA-approved alternative monitoring system requirements pursuant to 40 CFR part 75, subpart E</th>
</tr>
</thead>
<tbody>
<tr>
<td>SO₂</td>
<td>--------</td>
<td>√</td>
<td>--------</td>
<td>--------</td>
<td></td>
</tr>
<tr>
<td>NOₓ</td>
<td>√</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td></td>
</tr>
<tr>
<td>Heat input</td>
<td>--------</td>
<td>√</td>
<td>--------</td>
<td>--------</td>
<td></td>
</tr>
</tbody>
</table>
1. The above description of the monitoring used by a unit does not change, create an exemption from, or otherwise affect the monitoring, recordkeeping, and reporting requirements applicable to the unit under 40 C.F.R. §§ 97.530 through 97.535 (TR NOx Ozone Season Trading Program). The monitoring, recordkeeping and reporting requirements applicable to each unit will be included in the conditions of the permit. The conditions are available at the EPA’s website at http://www.epa.gov/cecssstateternal/pdfs/CSAPR_Title_V_Permit_Guidance.pdf.

2. Owners and operators must submit to the Administrator a monitoring plan for each unit in accordance with 40 C.F.R. §§ 75.53, 75.62 and 75.73, as applicable. The monitoring plan for each unit is available at the EPA’s website at http://www.epa.gov/airmarkets/emissions/monitoringplans.html.

3. Owners and operators that want to use an alternative monitoring system must submit to the Administrator a petition requesting approval of the alternative monitoring system in accordance with 40 C.F.R. § 75 Subpart E and 40 C.F.R. §§ 75.66 and 97.535 (TR NOx Ozone Season Trading Program). The Administrator’s response approving or disapproving any petition for an alternative monitoring system is available on the EPA’s website at http://www.epa.gov/airmarkets/emissions/petitions.html.

4. Owners and operators that want to use an alternative to any monitoring, recordkeeping, or reporting requirement under 40 C.F.R. §§ 97.530 through 97.534 (TR NOx Ozone Season Trading Program) must submit to the Administrator a petition requesting approval of the alternative in accordance with 40 C.F.R. §§ 75.66 and 97.535 (TR NOx Ozone Season Trading Program). The Administrator’s response approving or disapproving any petition for an alternative to a monitoring, recordkeeping, or reporting requirement is available on EPA’s website at http://www.epa.gov/airmarkets/emissions/petitions.html.
5. The descriptions of monitoring applicable to the unit included above meet the requirement of 40 C.F.R. §§ 97.530 through 97.534 (TR NOx Ozone Season Trading Program), and therefore minor permit modification procedures, in accordance with 40 C.F.R. §§ 70.7(e)(2)(i)(B) or 71.7(e)(1)(i)(B), may be used to add to or change this unit's monitoring system description.
TR NOX Ozone Season Trading Program Requirements (40 CFR 97.506)

a) **Designated representative requirements.** The owners and operators shall comply with the requirement to have a designated representative, and may have an alternate designated representative, in accordance with 40 CFR 97.513 through 97.518.

b) **Emissions monitoring, reporting, and recordkeeping requirements.**
 1) The owners and operators, and the designated representative, of each TR NOX Ozone Season source and each TR NOX Ozone Season unit at the source shall comply with the monitoring, reporting, and recordkeeping requirements of 40 CFR 97.530 (general requirements, including installation, certification, and data accounting, compliance deadlines, reporting data, prohibitions, and long-term cold storage), 97.531 (initial monitoring system certification and recertification procedures), 97.532 (monitoring system out-of-control periods), 97.533 (notifications concerning monitoring), 97.534 (recordkeeping and reporting, including monitoring plans, certification applications, quarterly reports, and compliance certification), and 97.535 (petitions for alternatives to monitoring, recordkeeping, or reporting requirements).

 2) The emissions data determined in accordance with 40 CFR 97.530 through 97.535 shall be used to calculate allocations of TR NOX Ozone Season allowances under 40 CFR 97.511(a)(2) and (b) and 97.512 and to determine compliance with the TR NOX Ozone Season emissions limitation and assurance provisions under paragraph (c) below, provided that, for each monitoring location from which mass emissions are reported, the mass emissions amount used in calculating such allocations and determining such compliance shall be the mass emissions amount for the monitoring location determined in accordance with 40 CFR 97.530 through 97.535 and rounded to the nearest ton, with any fraction of a ton less than 0.50 being deemed to be zero.

c) **NOX emissions requirements.**

 1) TR NOX Ozone Season emissions limitation.
 i) As of the allowance transfer deadline for a control period in a given year, the owners and operators of each TR NOX Ozone Season source and each TR NOX Ozone Season unit at the source shall hold, in the source's compliance account, TR NOX Ozone Season allowances available for deduction for such control period under 40 CFR 97.524(a) in an amount not less than the tons of total NOX emissions for such control period from all TR NOX Ozone Season units at the source.

 ii) If total NOX emissions during a control period in a given year from the TR NOX Ozone Season units at a TR NOX Ozone Season source are in excess of the TR NOX Ozone Season emissions limitation set forth in paragraph (c)(1)(i) above, then:

 (A) The owners and operators of the source and each TR NOX Ozone Season unit at the source shall hold the TR NOX Ozone Season allowances required for deduction under 40 CFR 97.524(d); and

 (B) The owners and operators of the source and each TR NOX Ozone Season unit at the source shall pay any fine, penalty, or assessment or comply with any other remedy imposed, for the same violations, under the Clean Air Act, and each ton of such excess emissions and each day of such control period shall constitute a separate violation of 40 CFR part 97, subpart BBBBB and the Clean Air Act.

 2) TR NOX Ozone Season assurance provisions.
i) If total NOX emissions during a control period in a given year from all TR NOX Ozone Season units at TR NOX Ozone Season sources in the state exceed the state assurance level, then the owners and operators of such sources and units in each group of one or more sources and units having a common designated representative for such control period, where the common designated representative’s share of such NOX emissions during such control period exceeds the common designated representative’s assurance level for the state and such control period, shall hold (in the assurance account established for the owners and operators of such group) TR NOX Ozone Season allowances available for deduction for such control period under 40 CFR 97.525(a) in an amount equal to two times the product (rounded to the nearest whole number), as determined by the Administrator in accordance with 40 CFR 97.525(b), of multiplying—

(A) The quotient of the amount by which the common designated representative’s share of such NOX emissions exceeds the common designated representative’s assurance level divided by the sum of the amounts, determined for all common designated representatives for such sources and units in the state for such control period, by which each common designated representative’s share of such NOX emissions exceeds the respective common designated representative’s assurance level; and

(B) The amount by which total NOX emissions from all TR NOX Ozone Season units at TR NOX Ozone Season sources in the state for such control period exceed the state assurance level.

ii) The owners and operators shall hold the TR NOX Ozone Season allowances required under paragraph (c)(2)(i) above, as of midnight of November 1 (if it is a business day), or midnight of the first business day thereafter (if November 1 is not a business day), immediately after such control period.

iii) Total NOX emissions from all TR NOX Ozone Season units at TR NOX Ozone Season sources in the state during a control period in a given year exceed the state assurance level if such total NOX emissions exceed the sum, for such control period, of the State NOX Ozone Season trading budget under 40 CFR 97.510(a) and the state’s variability limit under 40 CFR 97.510(b).

iv) It shall not be a violation of 40 CFR part 97, subpart BBBBB or of the Clean Air Act if total NOX emissions from all TR NOX Ozone Season units at TR NOX Ozone Season sources in the state during a control period exceed the state assurance level or if a common designated representative’s share of total NOX emissions from the TR NOX Ozone Season units at TR NOX Ozone Season sources in the state during a control period exceeds the common designated representative’s assurance level.

v) To the extent the owners and operators fail to hold TR NOX Ozone Season allowances for a control period in a given year in accordance with paragraphs (c)(2)(i) through (iii) above,

(A) The owners and operators shall pay any fine, penalty, or assessment or comply with any other remedy imposed under the Clean Air Act; and

(B) Each TR NOX Ozone Season allowance that the owners and operators fail to hold for such control period in accordance with paragraphs (c)(2)(i) through (iii) above and each day of such control period shall constitute a separate violation of 40 CFR part 97, subpart BBBBB and the Clean Air Act.

3) Compliance periods.
i) A TR NOX Ozone Season unit shall be subject to the requirements under paragraph (c)(1) above for the control period starting on the later of May 1, 2015 or the deadline for meeting the unit's monitor certification requirements under 40 CFR 97.530(b) and for each control period thereafter.

ii) A TR NOX Ozone Season unit shall be subject to the requirements under paragraph (c)(2) above for the control period starting on the later of May 1, 2017 or the deadline for meeting the unit's monitor certification requirements under 40 CFR 97.530(b) and for each control period thereafter.

4) Vintage of allowances held for compliance.
 i) A TR NOX Ozone Season allowance held for compliance with the requirements under paragraph (c)(1)(i) above for a control period in a given year must be a TR NOX Ozone Season allowance that was allocated for such control period or a control period in a prior year.
 ii) A TR NOX Ozone Season allowance held for compliance with the requirements under paragraphs (c)(1)(ii)(A) and (2)(i) through (iii) above for a control period in a given year must be a TR NOX Ozone Season allowance that was allocated for a control period in a prior year or the control period in the given year or in the immediately following year.

5) Allowance Management System requirements. Each TR NOX Ozone Season allowance shall be kept, deducted from, or transferred into, out of, or between Allowance Management System accounts in accordance with 40 CFR part 97, subpart BBBBBB.

6) Limited authorization. A TR NOX Ozone Season allowance is a limited authorization to emit one ton of NOX during the control period in one year. Such authorization is limited in its use and duration as follows:
 i) Such authorization shall only be used in accordance with the TR NOX Ozone Season Trading Program; and
 ii) Notwithstanding any other provision of 40 CFR part 97, subpart BBBBBB, the Administrator has the authority to terminate or limit the use and duration of such authorization to the extent the Administrator determines is necessary or appropriate to implement any provision of the Clean Air Act.

7) Property right. A TR NOX Ozone Season allowance does not constitute a property right.

d) Title V permit revision requirements.
 1) No title V permit revision shall be required for any allocation, holding, deduction, or transfer of TR NOX Ozone Season allowances in accordance with 40 CFR part 97, subpart BBBBBB.
 2) This permit incorporates the TR emissions monitoring, recordkeeping and reporting requirements pursuant to 40 CFR 97.530 through 97.535, and the requirements for a continuous emission monitoring system (pursuant to 40 CFR part 75, subparts B and H), an excepted monitoring system (pursuant to 40 CFR part 75, appendices D and E), a low mass emissions excepted monitoring methodology (pursuant to 40 CFR 75.19), and an alternative monitoring system (pursuant to 40 CFR part 75, subpart E). Therefore, the Description of TR Monitoring Provisions table for units identified in this permit may be added to, or changed, in this title V permit using minor permit modification procedures in accordance with 40 CFR 97.506(d)(2) and 70.7(e)(2)(i)(B) or 71.7(e)(1)(i)(B).

e) Additional recordkeeping and reporting requirements.
1) Unless otherwise provided, the owners and operators of each TR NOX Ozone Season source and each TR NOX Ozone Season unit at the source shall keep on site at the source each of the following documents (in hardcopy or electronic format) for a period of 5 years from the date the document is created. This period may be extended for cause, at any time before the end of 5 years, in writing by the Administrator.
 i) The certificate of representation under 40 CFR 97.516 for the designated representative for the source and each TR NOX Ozone Season unit at the source and all documents that demonstrate the truth of the statements in the certificate of representation; provided that the certificate and documents shall be retained on site at the source beyond such 5-year period until such certificate of representation and documents are superseded because of the submission of a new certificate of representation under 40 CFR 97.516 changing the designated representative.
 ii) All emissions monitoring information, in accordance with 40 CFR part 97, subpart BBBB.
 iii) Copies of all reports, compliance certifications, and other submissions and all records made or required under, or to demonstrate compliance with the requirements of, the TR NOX Ozone Season Trading Program.

2) The designated representative of a TR NOX Ozone Season source and each TR NOX Ozone Season unit at the source shall make all submissions required under the TR NOX Ozone Season Trading Program, except as provided in 40 CFR 97.518. This requirement does not change, create an exemption from, or otherwise affect the responsible official submission requirements under a title V operating permit program in 40 CFR parts 70 and 71.

f) Liability.
 1) Any provision of the TR NOX Ozone Season Trading Program that applies to a TR NOX Ozone Season source or the designated representative of a TR NOX Ozone Season source shall also apply to the owners and operators of such source and of the TR NOX Ozone Season units at the source.
 2) Any provision of the TR NOX Ozone Season Trading Program that applies to a TR NOX Ozone Season unit or the designated representative of a TR NOX Ozone Season unit shall also apply to the owners and operators of such unit.

g) Effect on other authorities. No provision of the TR NOX Ozone Season Trading Program or exemption under 40 CFR 97.505 shall be construed as exempting or excluding the owners and operators, and the designated representative, of a TR NOX Ozone Season source or TR NOX Ozone Season unit from compliance with any other provision of the applicable, approved state implementation plan, a federally enforceable permit, or the Clean Air Act.
Appendix E
NESHAP Subpart ZZZZ
Subpart ZZZZ—National Emissions Standards for Hazardous Air Pollutants for Stationary Reciprocating Internal Combustion Engines

Contents

WHAT THIS SUBPART COVERS

§63.6580 What is the purpose of subpart ZZZZ?
§63.6585 Am I subject to this subpart?
§63.6590 What parts of my plant does this subpart cover?
§63.6595 When do I have to comply with this subpart?

EMISSION AND OPERATING LIMITATIONS

§63.6600 What emission limitations and operating limitations must I meet if I own or operate a stationary RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions?
§63.6601 What emission limitations must I meet if I own or operate a new or reconstructed 4SLB stationary RICE with a site rating of greater than or equal to 250 brake HP and less than or equal to 500 brake HP located at a major source of HAP emissions?
§63.6602 What emission limitations and other requirements must I meet if I own or operate an existing stationary RICE with a site rating of equal to or less than 500 brake HP located at a major source of HAP emissions?
§63.6603 What emission limitations, operating limitations, and other requirements must I meet if I own or operate an existing stationary RICE located at an area source of HAP emissions?
§63.6604 What fuel requirements must I meet if I own or operate a stationary CI RICE?

GENERAL COMPLIANCE REQUIREMENTS

§63.6605 What are my general requirements for complying with this subpart?

TESTING AND INITIAL COMPLIANCE REQUIREMENTS

§63.6610 By what date must I conduct the initial performance tests or other initial compliance demonstrations if I own or operate a stationary RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions?
§63.6611 By what date must I conduct the initial performance tests or other initial compliance demonstrations if I own or operate a new or reconstructed 4SLB SI stationary RICE with a site rating of greater than or equal to 250 and less than or equal to 500 brake HP located at a major source of HAP emissions?
§63.6612 By what date must I conduct the initial performance tests or other initial compliance demonstrations if I own or operate an existing stationary RICE located at an area source of HAP emissions?
§63.6615 When must I conduct subsequent performance tests?
§63.6620 What performance tests and other procedures must I use?
§63.6625 What are my monitoring, installation, collection, operation, and maintenance requirements?
§63.6630 How do I demonstrate initial compliance with the emission limitations, operating limitations, and other requirements?

CONTINUOUS COMPLIANCE REQUIREMENTS

§63.6635 How do I monitor and collect data to demonstrate continuous compliance?
§63.6640 How do I demonstrate continuous compliance with the emission limitations, operating limitations, and other requirements?

NOTIFICATIONS, REPORTS, AND RECORDS
§63.6645 What notifications must I submit and when?
§63.6650 What reports must I submit and when?
§63.6655 What records must I keep?
§63.6660 In what form and how long must I keep my records?

OTHER REQUIREMENTS AND INFORMATION

§63.6665 What parts of the General Provisions apply to me?
§63.6670 Who implements and enforces this subpart?
§63.6675 What definitions apply to this subpart?
Table 1a to Subpart ZZZZ of Part 63—Emission Limitations for Existing, New, and Reconstructed Spark Ignition, 4SRB Stationary RICE >500 HP Located at a Major Source of HAP Emissions
Table 1b to Subpart ZZZZ of Part 63—Operating Limitations for Existing, New, and Reconstructed SI 4SRB Stationary RICE >500 HP Located at a Major Source of HAP Emissions
Table 2a to Subpart ZZZZ of Part 63—Emission Limitations for New and Reconstructed 2SLB and Compression Ignition Stationary RICE >500 HP and New and Reconstructed 4SLB Stationary RICE ≥250 HP Located at a Major Source of HAP Emissions
Table 2b to Subpart ZZZZ of Part 63—Operating Limitations for New and Reconstructed 2SLB and CI Stationary RICE >500 HP Located at a Major Source of HAP Emissions, New and Reconstructed 4SLB Stationary RICE ≥250 HP Located at a Major Source of HAP Emissions
Table 2c to Subpart ZZZZ of Part 63—Requirements for Existing Compression Ignition Stationary RICE Located at a Major Source of HAP Emissions and Existing Spark Ignition Stationary RICE ≤500 HP Located at a Major Source of HAP Emissions
Table 2d to Subpart ZZZZ of Part 63—Requirements for Existing Stationary RICE Located at Area Sources of HAP Emissions
Table 3 to Subpart ZZZZ of Part 63—Subsequent Performance Tests
Table 4 to Subpart ZZZZ of Part 63—Requirements for Performance Tests
Table 5 to Subpart ZZZZ of Part 63—Initial Compliance With Emission Limitations, Operating Limitations, and Other Requirements
Table 6 to Subpart ZZZZ of Part 63—Continuous Compliance With Emission Limitations, Operating Limitations, and Other Requirements
Table 7 to Subpart ZZZZ of Part 63—Requirements for Reports
Table 8 to Subpart ZZZZ of Part 63—Applicability of General Provisions to Subpart ZZZZ.
Appendix A to Subpart ZZZZ of Part 63—Protocol for Using an Electrochemical Analyzer to Determine Oxygen and Carbon Monoxide Concentrations From Certain Engines

SOURCE: 69 FR 33506, June 15, 2004, unless otherwise noted.

§63.6580 What is the purpose of subpart ZZZZ?

Subpart ZZZZ establishes national emission limitations and operating limitations for hazardous air pollutants (HAP) emitted from stationary reciprocating internal combustion engines (RICE) located at major and area sources of HAP emissions. This subpart also establishes requirements to demonstrate initial and continuous compliance with the emission limitations and operating limitations.

[73 FR 3603, Jan. 18, 2008]

§63.6585 Am I subject to this subpart?

You are subject to this subpart if you own or operate a stationary RICE at a major or area source of HAP emissions, except if the stationary RICE is being tested at a stationary RICE test cell/stand.

(a) A stationary RICE is any internal combustion engine which uses reciprocating motion to convert heat energy into mechanical work and which is not mobile. Stationary RICE differ from mobile RICE in that a stationary RICE is not a non-road engine as defined at 40 CFR 1068.30, and is not used to propel a motor vehicle or a vehicle used solely for competition.

(b) A major source of HAP emissions is a plant site that emits or has the potential to emit any single HAP at a rate of 10 tons (9.07 megagrams) or more per year or any combination of HAP at a rate of 25 tons (22.68 megagrams) or more per year, except that for oil and gas production facilities, a major source of HAP emissions is determined for each surface site.
(c) An area source of HAP emissions is a source that is not a major source.

(d) If you are an owner or operator of an area source subject to this subpart, your status as an entity subject to a standard or other requirements under this subpart does not subject you to the obligation to obtain a permit under 40 CFR part 70 or 71, provided you are not required to obtain a permit under 40 CFR 70.3(a) or 40 CFR 71.3(a) for a reason other than your status as an area source under this subpart. Notwithstanding the previous sentence, you must continue to comply with the provisions of this subpart as applicable.

(e) If you are an owner or operator of a stationary RICE used for national security purposes, you may be eligible to request an exemption from the requirements of this subpart as described in 40 CFR part 1068, subpart C.

(f) The emergency stationary RICE listed in paragraphs (f)(1) through (3) of this section are not subject to this subpart. The stationary RICE must meet the definition of an emergency stationary RICE in §63.6675, which includes operating according to the provisions specified in §63.6640(f).

(1) Existing residential emergency stationary RICE located at an area source of HAP emissions that do not operate or are not contractually obligated to be available for more than 15 hours per calendar year for the purposes specified in §63.6640(f)(2)(ii) and (iii) and that do not operate for the purpose specified in §63.6640(f)(4)(ii).

(2) Existing commercial emergency stationary RICE located at an area source of HAP emissions that do not operate or are not contractually obligated to be available for more than 15 hours per calendar year for the purposes specified in §63.6640(f)(2)(ii) and (iii) and that do not operate for the purpose specified in §63.6640(f)(4)(ii).

(3) Existing institutional emergency stationary RICE located at an area source of HAP emissions that do not operate or are not contractually obligated to be available for more than 15 hours per calendar year for the purposes specified in §63.6640(f)(2)(ii) and (iii) and that do not operate for the purpose specified in §63.6640(f)(4)(ii).

§63.6590 What parts of my plant does this subpart cover?

This subpart applies to each affected source.

(a) Affected source. An affected source is any existing, new, or reconstructed stationary RICE located at a major or area source of HAP emissions, excluding stationary RICE being tested at a stationary RICE test cell/stand.

(1) Existing stationary RICE.

(i) For stationary RICE with a site rating of more than 500 brake horsepower (HP) located at a major source of HAP emissions, a stationary RICE is existing if you commenced construction or reconstruction of the stationary RICE before December 19, 2002.

(ii) For stationary RICE with a site rating of less than or equal to 500 brake HP located at a major source of HAP emissions, a stationary RICE is existing if you commenced construction or reconstruction of the stationary RICE before June 12, 2006.

(iii) For stationary RICE located at an area source of HAP emissions, a stationary RICE is existing if you commenced construction or reconstruction of the stationary RICE before June 12, 2006.

(iv) A change in ownership of an existing stationary RICE does not make that stationary RICE a new or reconstructed stationary RICE.

(2) New stationary RICE. (i) A stationary RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions is new if you commenced construction of the stationary RICE on or after December 19, 2002.

(ii) A stationary RICE with a site rating of equal to or less than 500 brake HP located at a major source of HAP emissions is new if you commenced construction of the stationary RICE on or after June 12, 2006.

(iii) A stationary RICE located at an area source of HAP emissions is new if you commenced construction of the stationary RICE on or after June 12, 2006.

(3) Reconstructed stationary RICE. (i) A stationary RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions is reconstructed if you meet the definition of reconstruction in §63.2 and reconstruction is commenced on or after December 19, 2002.
(ii) A stationary RICE with a site rating of equal to or less than 500 brake HP located at a major source of HAP emissions is reconstructed if you meet the definition of reconstruction in §63.2 and reconstruction is commenced on or after June 12, 2006.

(iii) A stationary RICE located at an area source of HAP emissions is reconstructed if you meet the definition of reconstruction in §63.2 and reconstruction is commenced on or after June 12, 2006.

(b) **Stationary RICE subject to limited requirements.** (1) An affected source which meets either of the criteria in paragraphs (b)(1)(i) through (ii) of this section does not have to meet the requirements of this subpart and of subpart A of this part except for the initial notification requirements of §63.6645(f).

(i) The stationary RICE is a new or reconstructed emergency stationary RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions that does not operate or is not contractually obligated to be available for more than 15 hours per calendar year for the purposes specified in §63.6640(f)(2)(ii) and (iii).

(ii) The stationary RICE is a new or reconstructed limited use stationary RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions.

(2) A new or reconstructed stationary RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions which combusts landfill or digester gas equivalent to 10 percent or more of the gross heat input on an annual basis must meet the initial notification requirements of §63.6645(f) and the requirements of §§63.6625(c), 63.6650(g), and 63.6655(c). These stationary RICE do not have to meet the emission limitations and operating limitations of this subpart.

(3) The following stationary RICE do not have to meet the requirements of this subpart and of subpart A of this part, including initial notification requirements:

(i) Existing spark ignition 2 stroke lean burn (2SLB) stationary RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions;

(ii) Existing spark ignition 4 stroke lean burn (4SLB) stationary RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions;

(iii) Existing emergency stationary RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions that does not operate or is not contractually obligated to be available for more than 15 hours per calendar year for the purposes specified in §63.6640(f)(2)(ii) and (iii).

(iv) Existing limited use stationary RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions;

(v) Existing stationary RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions that combusts landfill gas or digester gas equivalent to 10 percent or more of the gross heat input on an annual basis;

(c) **Stationary RICE subject to Regulations under 40 CFR Part 60.** An affected source that meets any of the criteria in paragraphs (c)(1) through (7) of this section must meet the requirements of this part by meeting the requirements of 40 CFR part 60 subpart IIII, for compression ignition engines or 40 CFR part 60 subpart JJJJ, for spark ignition engines. No further requirements apply for such engines under this part.

(1) A new or reconstructed stationary RICE located at an area source;

(2) A new or reconstructed 2SLB stationary RICE with a site rating of less than or equal to 500 brake HP located at a major source of HAP emissions;

(3) A new or reconstructed 4SLB stationary RICE with a site rating of less than 250 brake HP located at a major source of HAP emissions;

(4) A new or reconstructed spark ignition 4 stroke rich burn (4SRB) stationary RICE with a site rating of less than or equal to 500 brake HP located at a major source of HAP emissions;

(5) A new or reconstructed stationary RICE with a site rating of less than or equal to 500 brake HP located at a major source of HAP emissions which combusts landfill or digester gas equivalent to 10 percent or more of the gross heat input on an annual basis;

(6) A new or reconstructed emergency or limited use stationary RICE with a site rating of less than or equal to 500 brake HP located at a major source of HAP emissions;
(7) A new or reconstructed compression ignition (CI) stationary RICE with a site rating of less than or equal to 500 brake HP located at a major source of HAP emissions.

§63.6595 When do I have to comply with this subpart?

(a) Affected sources. (1) If you have an existing stationary RICE, excluding existing non-emergency CI stationary RICE, with a site rating of more than 500 brake HP located at a major source of HAP emissions, you must comply with the applicable emission limitations, operating limitations and other requirements no later than June 15, 2007. If you have an existing non-emergency CI stationary RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions, an existing stationary CI RICE with a site rating of less than or equal to 500 brake HP located at a major source of HAP emissions, or an existing stationary CI RICE located at an area source of HAP emissions, you must comply with the applicable emission limitations, operating limitations, and other requirements no later than May 3, 2013. If you have an existing stationary SI RICE with a site rating of less than or equal to 500 brake HP located at a major source of HAP emissions, or an existing stationary SI RICE located at an area source of HAP emissions, you must comply with the applicable emission limitations, operating limitations, and other requirements no later than October 19, 2013.

(2) If you start up your new or reconstructed stationary RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions before August 16, 2004, you must comply with the applicable emission limitations and operating limitations in this subpart no later than August 16, 2004.

(3) If you start up your new or reconstructed stationary RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions after August 16, 2004, you must comply with the applicable emission limitations and operating limitations in this subpart upon startup of your affected source.

(4) If you start up your new or reconstructed stationary RICE with a site rating of less than or equal to 500 brake HP located at a major source of HAP emissions before January 18, 2008, you must comply with the applicable emission limitations and operating limitations in this subpart no later than January 18, 2008.

(5) If you start up your new or reconstructed stationary RICE with a site rating of less than or equal to 500 brake HP located at a major source of HAP emissions after January 18, 2008, you must comply with the applicable emission limitations and operating limitations in this subpart upon startup of your affected source.

(6) If you start up your new or reconstructed stationary RICE located at an area source of HAP emissions before January 18, 2008, you must comply with the applicable emission limitations and operating limitations in this subpart no later than January 18, 2008.

(7) If you start up your new or reconstructed stationary RICE located at an area source of HAP emissions after January 18, 2008, you must comply with the applicable emission limitations and operating limitations in this subpart upon startup of your affected source.

(b) Area sources that become major sources. If you have an area source that increases its emissions or its potential to emit such that it becomes a major source of HAP, the compliance dates in paragraphs (b)(1) and (2) of this section apply to you.

(1) Any stationary RICE for which construction or reconstruction is commenced after the date when your area source becomes a major source of HAP must be in compliance with this subpart upon startup of your affected source.

(2) Any stationary RICE for which construction or reconstruction is commenced before your area source becomes a major source of HAP must be in compliance with the provisions of this subpart that are applicable to RICE located at major sources within 3 years after your area source becomes a major source of HAP.

(c) If you own or operate an affected source, you must meet the applicable notification requirements in §63.6645 and in 40 CFR part 63, subpart A.

§63.6600 What emission limitations and operating limitations must I meet if I own or operate a stationary RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions?

Compliance with the numerical emission limitations established in this subpart is based on the results of testing the average of three 1-hour runs using the testing requirements and procedures in §63.6620 and Table 4 to this subpart.

(a) If you own or operate an existing, new, or reconstructed spark ignition 4SRB stationary RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions, you must comply with the emission limitations in Table 1a to this subpart and the operating limitations in Table 1b to this subpart which apply to you.

(b) If you own or operate a new or reconstructed 2SLB stationary RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions, or a new or reconstructed 4SLB stationary RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions, you must comply with the emission limitations in Table 1a to this subpart and the operating limitations in Table 1b to this subpart which apply to you.

(c) If you own or operate any of the following stationary RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions, you do not need to comply with the emission limitations in Tables 1a, 2a, 2c, and 2d to this subpart or operating limitations in Tables 1b and 2b to this subpart: an existing 2SLB stationary RICE; an existing 4SLB stationary RICE; a stationary RICE that combusts landfill gas or digester gas equivalent to 10 percent or more of the gross heat input on an annual basis; an emergency stationary RICE; or a limited use stationary RICE.

(d) If you own or operate an existing non-emergency stationary CI RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions, you must comply with the emission limitations in Table 2c to this subpart and the operating limitations in Table 2b to this subpart which apply to you.

§63.6601 What emission limitations must I meet if I own or operate a new or reconstructed 4SLB stationary RICE with a site rating of greater than or equal to 250 brake HP and less than or equal to 500 brake HP located at a major source of HAP emissions?

Compliance with the numerical emission limitations established in this subpart is based on the results of testing the average of three 1-hour runs using the testing requirements and procedures in §63.6620 and Table 4 to this subpart. If you own or operate a new or reconstructed 4SLB stationary RICE with a site rating of greater than or equal to 250 and less than or equal to 500 brake HP located at major source of HAP emissions manufactured on or after January 1, 2008, you must comply with the emission limitations in Table 2a to this subpart and the operating limitations in Table 2b to this subpart which apply to you.

§63.6602 What emission limitations and other requirements must I meet if I own or operate an existing stationary RICE with a site rating of equal to or less than 500 brake HP located at a major source of HAP emissions?

If you own or operate an existing stationary RICE with a site rating of equal to or less than 500 brake HP located at a major source of HAP emissions, you must comply with the emission limitations and other requirements in Table 2c to this subpart which apply to you. Compliance with the numerical emission limitations established in this subpart is based on the results of testing the average of three 1-hour runs using the testing requirements and procedures in §63.6620 and Table 4 to this subpart.

[78 FR 6701, Jan. 30, 2013]

§63.6603 What emission limitations, operating limitations, and other requirements must I meet if I own or operate an existing stationary RICE located at an area source of HAP emissions?

Compliance with the numerical emission limitations established in this subpart is based on the results of testing the average of three 1-hour runs using the testing requirements and procedures in §63.6620 and Table 4 to this subpart.

(a) If you own or operate an existing stationary RICE located at an area source of HAP emissions, you must comply with the requirements in Table 2d to this subpart and the operating limitations in Table 2b to this subpart that apply to you.
(b) If you own or operate an existing stationary non-emergency CI RICE with a site rating of more than 300 HP located at an area source of HAP that meets either paragraph (b)(1) or (2) of this section, you do not have to meet the numerical CO emission limitations specified in Table 2d of this subpart. Existing stationary non-emergency CI RICE with a site rating of more than 300 HP located at an area source of HAP that meet either paragraph (b)(1) or (2) of this section must meet the management practices that are shown for stationary non-emergency CI RICE with a site rating of less than or equal to 300 HP in Table 2d of this subpart.

(1) The area source is located in an area of Alaska that is not accessible by the Federal Aid Highway System (FAHS).

(2) The stationary RICE is located at an area source that meets paragraphs (b)(2)(i), (ii), and (iii) of this section.

(i) The only connection to the FAHS is through the Alaska Marine Highway System (AMHS), or the stationary RICE operation is within an isolated grid in Alaska that is not connected to the statewide electrical grid referred to as the Alaska Railbelt Grid.

(ii) At least 10 percent of the power generated by the stationary RICE on an annual basis is used for residential purposes.

(iii) The generating capacity of the area source is less than 12 megawatts, or the stationary RICE is used exclusively for backup power for renewable energy.

(c) If you own or operate an existing stationary non-emergency CI RICE with a site rating of more than 300 HP located on an offshore vessel that is an area source of HAP and is a nonroad vehicle that is an Outer Continental Shelf (OCS) source as defined in 40 CFR 55.2, you do not have to meet the numerical CO emission limitations specified in Table 2d of this subpart. You must meet all of the following management practices:

(1) Change oil every 1,000 hours of operation or annually, whichever comes first. Sources have the option to utilize an oil analysis program as described in §63.6625(i) in order to extend the specified oil change requirement.

(2) Inspect and clean air filters every 750 hours of operation or annually, whichever comes first, and replace as necessary.

(3) Inspect fuel filters and belts, if installed, every 750 hours of operation or annually, whichever comes first, and replace as necessary.

(4) Inspect all flexible hoses every 1,000 hours of operation or annually, whichever comes first, and replace as necessary.

(d) If you own or operate an existing non-emergency CI RICE with a site rating of more than 300 HP located at an area source of HAP emissions that is certified to the Tier 1 or Tier 2 emission standards in Table 1 of 40 CFR 89.112 and that is subject to an enforceable state or local standard that requires the engine to be replaced no later than June 1, 2018, you may until January 1, 2015, or 12 years after the installation date of the engine (whichever is later), but not later than June 1, 2018, choose to comply with the management practices that are shown for stationary non-emergency CI RICE with a site rating of less than or equal to 300 HP in Table 2d of this subpart instead of the applicable emission limitations in Table 2d, operating limitations in Table 2b, and crankcase ventilation system requirements in §63.6625(g). You must comply with the emission limitations in Table 2d and operating limitations in Table 2b that apply for non-emergency CI RICE with a site rating of more than 300 HP located at an area source of HAP emissions by January 1, 2015, or 12 years after the installation date of the engine (whichever is later), but not later than June 1, 2018. You must also comply with the crankcase ventilation system requirements in §63.6625(g) by January 1, 2015, or 12 years after the installation date of the engine (whichever is later), but not later than June 1, 2018.

(e) If you own or operate an existing non-emergency CI RICE with a site rating of more than 300 HP located at an area source of HAP emissions that is certified to the Tier 3 (Tier 2 for engines above 560 kilowatt (kW)) emission standards in Table 1 of 40 CFR 89.112, you may comply with the requirements under this part by meeting the requirements for Tier 3 engines (Tier 2 for engines above 560 kW) in 40 CFR part 60 subpart III instead of the emission limitations and other requirements that would otherwise apply under this part for existing non-emergency CI RICE with a site rating of more than 300 HP located at an area source of HAP emissions.

(f) An existing non-emergency SI 4SLB and 4SRB stationary RICE with a site rating of more than 500 HP located at area sources of HAP must meet the definition of remote stationary RICE in §63.6675 on the initial compliance date for the engine, October 19, 2013, in order to be considered a remote stationary RICE under this subpart. Owners and operators of existing non-emergency SI 4SLB and 4SRB stationary RICE with a site rating of more than 500 HP located at area sources of HAP that meet the definition of remote stationary RICE in §63.6675 of this subpart as of October 19, 2013 must evaluate the status of their stationary RICE every 12 months. Owners and operators must keep records of the initial and annual evaluation of the status of the engine. If the evaluation indicates that the stationary RICE no longer meets the definition of remote stationary RICE in §63.6675 of this subpart, the owner or operator must comply with all of the requirements for existing non-emergency SI
§63.6604 What fuel requirements must I meet if I own or operate a stationary CI RICE?

(a) If you own or operate an existing non-emergency, non-black start CI stationary RICE with a site rating of more than 300 brake HP with a displacement of less than 30 liters per cylinder that uses diesel fuel, you must use diesel fuel that meets the requirements in 40 CFR 80.510(b) for nonroad diesel fuel.

(b) Beginning January 1, 2015, if you own or operate an existing emergency CI stationary RICE with a site rating of more than 100 brake HP and a displacement of less than 30 liters per cylinder that uses diesel fuel and operates or is contractually obligated to be available for more than 15 hours per calendar year for the purposes specified in §63.6640(f)(2)(ii) and (iii) or that operates for the purpose specified in §63.6640(f)(4)(ii), you must use diesel fuel that meets the requirements in 40 CFR 80.510(b) for nonroad diesel fuel, except that any existing diesel fuel purchased (or otherwise obtained) prior to January 1, 2015, may be used until depleted.

(c) Beginning January 1, 2015, if you own or operate a new emergency CI stationary RICE with a site rating of more than 500 brake HP and a displacement of less than 30 liters per cylinder located at a major source of HAP that uses diesel fuel and operates or is contractually obligated to be available for more than 15 hours per calendar year for the purposes specified in §63.6640(f)(2)(ii) and (iii), you must use diesel fuel that meets the requirements in 40 CFR 80.510(b) for nonroad diesel fuel, except that any existing diesel fuel purchased (or otherwise obtained) prior to January 1, 2015, may be used until depleted.

(d) Existing CI stationary RICE located in Guam, American Samoa, the Commonwealth of the Northern Mariana Islands, at area sources in areas of Alaska that meet either §63.6603(b)(1) or §63.6603(b)(2), or are on offshore vessels that meet §63.6603(c) are exempt from the requirements of this section.

[78 FR 6702, Jan. 30, 2013]
(b) If you commenced construction or reconstruction between December 19, 2002 and June 15, 2004 and own or operate stationary RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions, you must demonstrate initial compliance with either the proposed emission limitations or the promulgated emission limitations no later than February 10, 2005 or no later than 180 days after startup of the source, whichever is later, according to §63.7(a)(2)(ix).

(c) If you commenced construction or reconstruction between December 19, 2002 and June 15, 2004 and own or operate stationary RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions, and you chose to comply with the proposed emission limitations when demonstrating initial compliance, you must conduct a second performance test to demonstrate compliance with the promulgated emission limitations by December 13, 2007 or after startup of the source, whichever is later, according to §63.7(a)(2)(ix).

(d) An owner or operator is not required to conduct an initial performance test on units for which a performance test has been previously conducted, but the test must meet all of the conditions described in paragraphs (d)(1) through (5) of this section.

 (1) The test must have been conducted using the same methods specified in this subpart, and these methods must have been followed correctly.

 (2) The test must not be older than 2 years.

 (3) The test must be reviewed and accepted by the Administrator.

 (4) Either no process or equipment changes must have been made since the test was performed, or the owner or operator must be able to demonstrate that the results of the performance test, with or without adjustments, reliably demonstrate compliance despite process or equipment changes.

 (5) The test must be conducted at any load condition within plus or minus 10 percent of 100 percent load.

[69 FR 33506, June 15, 2004, as amended at 73 FR 3605, Jan. 18, 2008]

§63.6611 By what date must I conduct the initial performance tests or other initial compliance demonstrations if I own or operate a new or reconstructed 4SLB SI stationary RICE with a site rating of greater than or equal to 250 and less than or equal to 500 brake HP located at a major source of HAP emissions?

If you own or operate a new or reconstructed 4SLB stationary RICE with a site rating of greater than or equal to 250 and less than or equal to 500 brake HP located at a major source of HAP emissions, you must conduct an initial performance test within 240 days after the compliance date that is specified for your stationary RICE in §63.6595 and according to the provisions specified in Table 4 to this subpart, as appropriate.

§63.6612 By what date must I conduct the initial performance tests or other initial compliance demonstrations if I own or operate an existing stationary RICE with a site rating of less than or equal to 500 brake HP located at a major source of HAP emissions or an existing stationary RICE located at an area source of HAP emissions?

If you own or operate an existing stationary RICE with a site rating of less than or equal to 500 brake HP located at a major source of HAP emissions or an existing stationary RICE located at an area source of HAP emissions you are subject to the requirements of this section.

(a) You must conduct any initial performance test or other initial compliance demonstration according to Tables 4 and 5 to this subpart that apply to you within 180 days after the compliance date that is specified for your stationary RICE in §63.6595 and according to the provisions in §63.7(a)(2).

(b) An owner or operator is not required to conduct an initial performance test on a unit for which a performance test has been previously conducted, but the test must meet all of the conditions described in paragraphs (b)(1) through (4) of this section.

 (1) The test must have been conducted using the same methods specified in this subpart, and these methods must have been followed correctly.
(2) The test must not be older than 2 years.

(3) The test must be reviewed and accepted by the Administrator.

(4) Either no process or equipment changes must have been made since the test was performed, or the owner or operator must be able to demonstrate that the results of the performance test, with or without adjustments, reliably demonstrate compliance despite process or equipment changes.

§63.6615 When must I conduct subsequent performance tests?

If you must comply with the emission limitations and operating limitations, you must conduct subsequent performance tests as specified in Table 3 of this subpart.

§63.6620 What performance tests and other procedures must I use?

(a) You must conduct each performance test in Tables 3 and 4 of this subpart that applies to you.

(b) Each performance test must be conducted according to the requirements that this subpart specifies in Table 4 to this subpart. If you own or operate a non-operational stationary RICE that is subject to performance testing, you do not need to start up the engine solely to conduct the performance test. Owners and operators of a non-operational engine can conduct the performance test when the engine is started up again. The test must be conducted at any load condition within plus or minus 10 percent of 100 percent load for the stationary RICE listed in paragraphs (b)(1) through (4) of this section.

(1) Non-emergency 4SRB stationary RICE with a site rating of greater than 500 brake HP located at a major source of HAP emissions.

(2) New non-emergency 4SLB stationary RICE with a site rating of greater than or equal to 250 brake HP located at a major source of HAP emissions.

(3) New non-emergency 2SLB stationary RICE with a site rating of greater than 500 brake HP located at a major source of HAP emissions.

(4) New non-emergency CI stationary RICE with a site rating of greater than 500 brake HP located at a major source of HAP emissions.

(c) [Reserved]

(d) You must conduct three separate test runs for each performance test required in this section, as specified in §63.7(e) (3). Each test run must last at least 1 hour, unless otherwise specified in this subpart.

(e)(1) You must use Equation 1 of this section to determine compliance with the percent reduction requirement:

$$\frac{C_i - C_o}{C_i} \times 100 - R \quad \text{[Eq. 1]}$$

Where:

$C_i =$ concentration of carbon monoxide (CO), total hydrocarbons (THC), or formaldehyde at the control device inlet,

$C_o =$ concentration of CO, THC, or formaldehyde at the control device outlet, and

$R =$ percent reduction of CO, THC, or formaldehyde emissions.

(2) You must normalize the CO, THC, or formaldehyde concentrations at the inlet and outlet of the control device to a dry basis and to 15 percent oxygen, or an equivalent percent carbon dioxide (CO$_2$). If pollutant concentrations are to be corrected to 15 percent oxygen and CO$_2$ concentration is measured in lieu of oxygen concentration measurement, a CO$_2$ correction factor is needed. Calculate the CO$_2$ correction factor as described in paragraphs (e)(2)(i) through (iii) of this section.

(i) Calculate the fuel-specific F_o value for the fuel burned during the test using values obtained from Method 19, Section 5.2, and the following equation:
\[F_o = \frac{0.209 \cdot F_d}{F_c} \]

View or download PDF

Where:

- \(F_o \) = Fuel factor based on the ratio of oxygen volume to the ultimate \(\text{CO}_2 \) volume produced by the fuel at zero percent excess air.
- \(0.209 \) = Fraction of air that is oxygen, percent/100.
- \(F_d \) = Ratio of the volume of dry effluent gas to the gross calorific value of the fuel from Method 19, dsm\(^3\)J (dscf/10\(^6\) Btu).
- \(F_c \) = Ratio of the volume of \(\text{CO}_2 \) produced to the gross calorific value of the fuel from Method 19, dsm\(^3\)J (dscf/10\(^6\) Btu)

(ii) Calculate the \(\text{CO}_2 \) correction factor for correcting measurement data to 15 percent \(\text{O}_2 \), as follows:

\[X_{\text{CO}_2} = \frac{5.9}{F_o} \]

View or download PDF

Where:

- \(X_{\text{CO}_2} \) = \(\text{CO}_2 \) correction factor, percent.
- \(5.9 \) = 20.9 percent \(\text{O}_2 \) — 15 percent \(\text{O}_2 \), the defined \(\text{O}_2 \) correction value, percent.

(iii) Calculate the \(\text{CO}, \text{THC}, \) and formaldehyde gas concentrations adjusted to 15 percent \(\text{O}_2 \) using \(\text{CO}_2 \) as follows:

\[C_{\text{adj}} = \frac{C_d \cdot X_{\text{CO}_2}}{\%\text{CO}_2} \]

View or download PDF

Where:

- \(C_{\text{adj}} \) = Calculated concentration of \(\text{CO}, \text{THC}, \) or formaldehyde adjusted to 15 percent \(\text{O}_2 \).
- \(C_d \) = Measured concentration of \(\text{CO}, \text{THC}, \) or formaldehyde, uncorrected.
- \(X_{\text{CO}_2} \) = \(\text{CO}_2 \) correction factor, percent.
- \(\%\text{CO}_2 \) = Measured \(\text{CO}_2 \) concentration measured, dry basis, percent.

(f) If you comply with the emission limitation to reduce \(\text{CO} \) and you are not using an oxidation catalyst, if you comply with the emission limitation to reduce formaldehyde and you are not using NSCR, or if you comply with the emission limitation to limit the concentration of formaldehyde in the stationary RICE exhaust and you are not using an oxidation catalyst or NSCR, you must petition the Administrator for operating limitations to be established during the initial performance test and continuously monitored thereafter; or for approval of no operating limitations. You must not conduct the initial performance test until after the petition has been approved by the Administrator.

(g) If you petition the Administrator for approval of operating limitations, your petition must include the information described in paragraphs (g)(1) through (5) of this section.

(1) Identification of the specific parameters you propose to use as operating limitations;

(2) A discussion of the relationship between these parameters and HAP emissions, identifying how HAP emissions change with changes in these parameters, and how limitations on these parameters will serve to limit HAP emissions;

(3) A discussion of how you will establish the upper and/or lower values for these parameters which will establish the limits on these parameters in the operating limitations;

(4) A discussion identifying the methods you will use to measure and the instruments you will use to monitor these parameters, as well as the relative accuracy and precision of these methods and instruments; and

(5) A discussion identifying the frequency and methods for recalibrating the instruments you will use for monitoring these parameters.

(h) If you petition the Administrator for approval of no operating limitations, your petition must include the information described in paragraphs (h)(1) through (7) of this section.
(1) Identification of the parameters associated with operation of the stationary RICE and any emission control device which could change intentionally (e.g., operator adjustment, automatic controller adjustment, etc.) or unintentionally (e.g., wear and tear, error, etc.) on a routine basis or over time;

(2) A discussion of the relationship, if any, between changes in the parameters and changes in HAP emissions;

(3) For the parameters which could change in such a way as to increase HAP emissions, a discussion of whether establishing limitations on the parameters would serve to limit HAP emissions;

(4) For the parameters which could change in such a way as to increase HAP emissions, a discussion of how you could establish upper and/or lower values for the parameters which would establish limits on the parameters in operating limitations;

(5) For the parameters, a discussion identifying the methods you could use to measure them and the instruments you could use to monitor them, as well as the relative accuracy and precision of the methods and instruments;

(6) For the parameters, a discussion identifying the frequency and methods for recalibrating the instruments you could use to monitor them; and

(7) A discussion of why, from your point of view, it is infeasible or unreasonable to adopt the parameters as operating limitations.

(i) The engine percent load during a performance test must be determined by documenting the calculations, assumptions, and measurement devices used to measure or estimate the percent load in a specific application. A written report of the average percent load determination must be included in the notification of compliance status. The following information must be included in the written report: the engine model number, the engine manufacturer, the year of purchase, the manufacturer's site-rated brake horsepower, the ambient temperature, pressure, and humidity during the performance test, and all assumptions that were made to estimate or calculate percent load during the performance test must be clearly explained. If measurement devices such as flow meters, kilowatt meters, beta analyzers, strain gauges, etc. are used, the model number of the measurement device, and an estimate of its accurate in percentage of true value must be provided.

§63.6625 What are my monitoring, installation, collection, operation, and maintenance requirements?

(a) If you elect to install a CEMS as specified in Table 5 of this subpart, you must install, operate, and maintain a CEMS to monitor CO and either O₂ or CO₂ according to the requirements in paragraphs (a)(1) through (4) of this section. If you are meeting a requirement to reduce CO emissions, the CEMS must be installed at both the inlet and outlet of the control device. If you are meeting a requirement to limit the concentration of CO, the CEMS must be installed at the outlet of the control device.

(1) Each CEMS must be installed, operated, and maintained according to the applicable performance specifications of 40 CFR part 60, appendix B.

(2) You must conduct an initial performance evaluation and an annual relative accuracy test audit (RATA) of each CEMS according to the requirements in §63.8 and according to the applicable performance specifications of 40 CFR part 60, appendix B as well as daily and periodic data quality checks in accordance with 40 CFR part 60, appendix F, procedure 1.

(3) As specified in §63.8(c)(4)(ii), each CEMS must complete a minimum of one cycle of operation (sampling, analyzing, and data recording) for each successive 15-minute period. You must have at least two data points, with each representing a different 15-minute period, to have a valid hour of data.

(4) The CEMS data must be reduced as specified in §63.8(g)(2) and recorded in parts per million or parts per billion (as appropriate for the applicable limitation) at 15 percent oxygen or the equivalent CO₂ concentration.

(b) If you are required to install a continuous parameter monitoring system (CPMS) as specified in Table 5 of this subpart, you must install, operate, and maintain each CPMS according to the requirements in paragraphs (b)(1) through (6) of this section. For an affected source that is complying with the emission limitations and operating limitations on March 9, 2011, the requirements in paragraph (b) of this section are applicable September 6, 2011.

(1) You must prepare a site-specific monitoring plan that addresses the monitoring system design, data collection, and the quality assurance and quality control elements outlined in paragraphs (b)(1)(i) through (v) of this section and in §63.8(d). As specified in §63.8(f)(4), you may request approval of monitoring system quality assurance and quality control procedures alternative to those specified in paragraphs (b)(1) through (5) of this section in your site-specific monitoring plan.
(i) The performance criteria and design specifications for the monitoring system equipment, including the sample interface, detector signal analyzer, and data acquisition and calculations;

(ii) Sampling interface (e.g., thermocouple) location such that the monitoring system will provide representative measurements;

(iii) Equipment performance evaluations, system accuracy audits, or other audit procedures;

(iv) Ongoing operation and maintenance procedures in accordance with provisions in §63.8(c)(1)(ii) and (c)(3); and

(v) Ongoing reporting and recordkeeping procedures in accordance with provisions in §63.10(c), (e)(1), and (e)(2)(i).

(2) You must install, operate, and maintain each CPMS in continuous operation according to the procedures in your site-specific monitoring plan.

(3) The CPMS must collect data at least once every 15 minutes (see also §63.6635).

(4) For a CPMS for measuring temperature range, the temperature sensor must have a minimum tolerance of 2.8 degrees Celsius (5 degrees Fahrenheit) or 1 percent of the measurement range, whichever is larger.

(5) You must conduct the CPMS equipment performance evaluation, system accuracy audits, or other audit procedures specified in your site-specific monitoring plan at least annually.

(6) You must conduct a performance evaluation of each CPMS in accordance with your site-specific monitoring plan.

(c) If you are operating a new or reconstructed stationary RICE which fires landfill gas or digester gas equivalent to 10 percent or more of the gross heat input on an annual basis, you must monitor and record your fuel usage daily with separate fuel meters to measure the volumetric flow rate of each fuel. In addition, you must operate your stationary RICE in a manner which reasonably minimizes HAP emissions.

(d) If you are operating a new or reconstructed emergency 4SLB stationary RICE with a site rating of greater than or equal to 250 and less than or equal to 500 brake HP located at a major source of HAP emissions, you must install a non-resettable hour meter prior to the startup of the engine.

(e) If you own or operate any of the following stationary RICE, you must operate and maintain the stationary RICE and after-treatment control device (if any) according to the manufacturer's emission-related written instructions or develop your own maintenance plan which must provide to the extent practicable for the maintenance and operation of the engine in a manner consistent with good air pollution control practice for minimizing emissions:

(1) An existing stationary RICE with a site rating of less than 100 HP located at a major source of HAP emissions;

(2) An existing emergency or black start stationary RICE with a site rating of less than or equal to 500 HP located at a major source of HAP emissions;

(3) An existing emergency or black start stationary RICE located at an area source of HAP emissions;

(4) An existing non-emergency, non-black start stationary CI RICE with a site rating less than or equal to 300 HP located at an area source of HAP emissions;

(5) An existing non-emergency, non-black start 2SLB stationary RICE located at an area source of HAP emissions;

(6) An existing non-emergency, non-black start stationary RICE located at an area source of HAP emissions which combusts landfill or digester gas equivalent to 10 percent or more of the gross heat input on an annual basis.

(7) An existing non-emergency, non-black start 4SLB stationary RICE with a site rating less than or equal to 500 HP located at an area source of HAP emissions;

(8) An existing non-emergency, non-black start 4SRB stationary RICE with a site rating less than or equal to 500 HP located at an area source of HAP emissions;

(9) An existing, non-emergency, non-black start 4SLB stationary RICE with a site rating greater than 500 HP located at an area source of HAP emissions that is operated 24 hours or less per calendar year; and

(10) An existing, non-emergency, non-black start 4SRB stationary RICE with a site rating greater than 500 HP located at an area source of HAP emissions that is operated 24 hours or less per calendar year.
§63.6630 How do I demonstrate initial compliance with the emission limitations, operating limitations, and other requirements?

(a) You must demonstrate initial compliance with each emission limitation, operating limitation, and other requirement that applies to you according to Table 5 of this subpart.

(f) If you own or operate an existing emergency stationary RICE with a site rating of less than or equal to 500 brake HP located at a major source of HAP emissions or an existing emergency stationary RICE located at an area source of HAP emissions, you must install a non-resettable hour meter if one is not already installed.

(g) If you own or operate an existing non-emergency, non-black start CI engine greater than or equal to 300 HP that is not equipped with a closed crankcase ventilation system, you must comply with either paragraph (g)(1) or paragraph (2) of this section. Owners and operators must follow the manufacturer's specified maintenance requirements for operating and maintaining the open or closed crankcase ventilation systems and replacing the crankcase filters, or can request the Administrator to approve different maintenance requirements that are as protective as manufacturer requirements. Existing CI engines located at area sources in areas of Alaska that meet either §63.6603(b)(1) or §63.6603(b)(2) do not have to meet the requirements of this paragraph (g). Existing CI engines located on offshore vessels that meet §63.6603(c) do not have to meet the requirements of this paragraph (g).

(1) Install a closed crankcase ventilation system that prevents crankcase emissions from being emitted to the atmosphere, or

(2) Install an open crankcase filtration emission control system that reduces emissions from the crankcase by filtering the exhaust stream to remove oil mist, particulates and metals.

(h) If you operate a new, reconstructed, or existing stationary engine, you must minimize the engine's time spent at idle during startup and minimize the engine's startup time to a period needed for appropriate and safe loading of the engine, not to exceed 30 minutes, after which time the emission standards applicable to all times other than startup in Tables 1a, 2a, 2c, and 2d to this subpart apply.

(i) If you own or operate a stationary CI engine that is subject to the work, operation or management practices in items 1 or 2 of Table 2c to this subpart or in items 1 or 4 of Table 2d to this subpart, you have the option of utilizing an oil analysis program in order to extend the specified oil change requirement in Tables 2c and 2d to this subpart. The oil analysis program must be performed at the same frequency specified for changing the oil in Table 2c or 2d to this subpart. The analysis program must at a minimum analyze the following three parameters: Total Base Number, viscosity, and percent water content. The condemning limits for these parameters are as follows: Total Base Number is less than 30 percent of the Total Base Number of the oil when new; viscosity of the oil has changed by more than 20 percent from the viscosity of the oil when new; or percent water content (by volume) is greater than 0.5. If all of these condemning limits are not exceeded, the engine owner or operator is not required to change the oil. If any of the limits are exceeded, the engine owner or operator must change the oil within 2 business days of receiving the results of the analysis; if the engine is not in operation when the results of the analysis are received, the engine owner or operator must change the oil within 2 business days of receiving the results of the analysis; if the engine is not in operation when the results of the analysis are received, the engine owner or operator must change the oil within 2 business days of receiving the results of the analysis; if the engine is not in operation when the results of the analysis are received, the engine owner or operator must change the oil within 2 business days of receiving the results of the analysis; if the engine is not in operation when the results of the analysis are received, the engine owner or operator must change the oil within 2 business days of receiving the results of the analysis.

(j) If you own or operate a stationary SI engine that is subject to the work, operation or management practices in items 6, 7, or 8 of Table 2c to this subpart or in items 5, 6, 7, 9, or 11 of Table 2d to this subpart, you have the option of utilizing an oil analysis program in order to extend the specified oil change requirement in Tables 2c and 2d to this subpart. The oil analysis program must be performed at the same frequency specified for changing the oil in Table 2c or 2d to this subpart. The analysis program must at a minimum analyze the following three parameters: Total Acid Number, viscosity, and percent water content. The condemning limits for these parameters are as follows: Total Acid Number increases by more than 3.0 milligrams of potassium hydroxide (KOH) per gram from Total Acid Number of the oil when new; viscosity of the oil has changed by more than 20 percent from the viscosity of the oil when new; or percent water content (by volume) is greater than 0.5. If all of these condemning limits are not exceeded, the engine owner or operator is not required to change the oil. If any of the limits are exceeded, the engine owner or operator must change the oil within 2 business days of receiving the results of the analysis; if the engine is not in operation when the results of the analysis are received, the engine owner or operator must change the oil within 2 business days of receiving the results of the analysis; if the engine is not in operation when the results of the analysis are received, the engine owner or operator must change the oil within 2 business days of receiving the results of the analysis; if the engine is not in operation when the results of the analysis are received, the engine owner or operator must change the oil within 2 business days of receiving the results of the analysis; if the engine is not in operation when the results of the analysis are received, the engine owner or operator must change the oil within 2 business days of receiving the results of the analysis.
(b) During the initial performance test, you must establish each operating limitation in Tables 1b and 2b of this subpart that applies to you.

(c) You must submit the Notification of Compliance Status containing the results of the initial compliance demonstration according to the requirements in §63.6645.

(d) Non-emergency 4SRB stationary RICE complying with the requirement to reduce formaldehyde emissions by 76 percent or more can demonstrate initial compliance with the formaldehyde emission limit by testing for THC instead of formaldehyde. The testing must be conducted according to the requirements in Table 4 of this subpart. The average reduction of emissions of THC determined from the performance test must be equal to or greater than 30 percent.

(e) The initial compliance demonstration required for existing non-emergency 4SLB and 4SRB stationary RICE with a site rating of more than 500 HP located at an area source of HAP that are not remote stationary RICE and that are operated more than 24 hours per calendar year must be conducted according to the following requirements:

(1) The compliance demonstration must consist of at least three test runs.

(2) Each test run must be of at least 15 minute duration, except that each test conducted using the method in appendix A to this subpart must consist of at least one measurement cycle and include at least 2 minutes of test data phase measurement.

(3) If you are demonstrating compliance with the CO concentration or CO percent reduction requirement, you must measure CO emissions using one of the CO measurement methods specified in Table 4 of this subpart, or using appendix A to this subpart.

(4) If you are demonstrating compliance with the THC percent reduction requirement, you must measure THC emissions using Method 25A, reported as propane, of 40 CFR part 60, appendix A.

(5) You must measure O\textsubscript{2} using one of the O\textsubscript{2} measurement methods specified in Table 4 of this subpart. Measurements to determine O\textsubscript{2} concentration must be made at the same time as the measurements for CO or THC concentration.

(6) If you are demonstrating compliance with the CO or THC percent reduction requirement, you must measure CO or THC emissions and O\textsubscript{2} emissions simultaneously at the inlet and outlet of the control device.

CONTINUOUS COMPLIANCE REQUIREMENTS

§63.6635 How do I monitor and collect data to demonstrate continuous compliance?

(a) If you must comply with emission and operating limitations, you must monitor and collect data according to this section.

(b) Except for monitor malfunctions, associated repairs, required performance evaluations, and required quality assurance or control activities, you must monitor continuously at all times that the stationary RICE is operating. A monitoring malfunction is any sudden, infrequent, not reasonably preventable failure of the monitoring to provide valid data. Monitoring failures that are caused in part by poor maintenance or careless operation are not malfunctions.

(c) You may not use data recorded during monitoring malfunctions, associated repairs, and required quality assurance or control activities in data averages and calculations used to report emission or operating levels. You must, however, use all the valid data collected during all other periods.

[69 FR 33506, June 15, 2004, as amended at 76 FR 12867, Mar. 9, 2011]

§63.6640 How do I demonstrate continuous compliance with the emission limitations, operating limitations, and other requirements?

(a) You must demonstrate continuous compliance with each emission limitation, operating limitation, and other requirements in Tables 1a and 1b, Tables 2a and 2b, Table 2c, and Table 2d to this subpart that apply to you according to methods specified in Table 6 to this subpart.
(f) If you own or operate an emergency stationary RICE, you must operate the emergency stationary RICE according to the requirements in paragraphs (f)(1) through (4) of this section. In order for the engine to be considered an emergency stationary RICE under this subpart, any operation other than emergency operation, maintenance and testing, emergency demand response, and operation in non-emergency situations for 50 hours per year, as described in paragraphs (f)(1) through (4) of this section, is prohibited. If you do not operate the engine according to the requirements in paragraphs (f)(1) through (4) of this section, the engine will not be considered an emergency engine under this subpart and must meet all requirements for non-emergency engines.

(1) There is no time limit on the use of emergency stationary RICE in emergency situations.
(2) You may operate your emergency stationary RICE for any combination of the purposes specified in paragraphs (f)(2)(i) through (iii) of this section for a maximum of 100 hours per calendar year. Any operation for non-emergency situations as allowed by paragraphs (f)(3) and (4) of this section counts as part of the 100 hours per calendar year allowed by this paragraph (f)(2).

(i) Emergency stationary RICE may be operated for maintenance checks and readiness testing, provided that the tests are recommended by federal, state or local government, the manufacturer, the vendor, the regional transmission organization or equivalent balancing authority and transmission operator, or the insurance company associated with the engine. The owner or operator may petition the Administrator for approval of additional hours to be used for maintenance checks and readiness testing, but a petition is not required if the owner or operator maintains records indicating that federal, state, or local standards require maintenance and testing of emergency RICE beyond 100 hours per calendar year.

(ii) Emergency stationary RICE may be operated for emergency demand response for periods in which the Reliability Coordinator under the North American Electric Reliability Corporation (NERC) Reliability Standard EOP-002-3, Capacity and Energy Emergencies (incorporated by reference, see §63.14), or other authorized entity as determined by the Reliability Coordinator, has declared an Energy Emergency Alert Level 2 as defined in the NERC Reliability Standard EOP-002-3.

(iii) Emergency stationary RICE may be operated for periods where there is a deviation of voltage or frequency of 5 percent or greater below standard voltage or frequency.

(3) Emergency stationary RICE located at major sources of HAP may be operated for up to 50 hours per calendar year in non-emergency situations. The 50 hours of operation in non-emergency situations are counted as part of the 100 hours per calendar year for maintenance and testing and emergency demand response provided in paragraph (f)(2) of this section. The 50 hours per year for non-emergency situations cannot be used for peak shaving or non-emergency demand response, or to generate income for a facility to supply power to an electric grid or otherwise supply power as part of a financial arrangement with another entity.

(4) Emergency stationary RICE located at area sources of HAP may be operated for up to 50 hours per calendar year in non-emergency situations. The 50 hours of operation in non-emergency situations are counted as part of the 100 hours per calendar year for maintenance and testing and emergency demand response provided in paragraph (f)(2) of this section. Except as provided in paragraphs (f)(4)(i) and (ii) of this section, the 50 hours per year for non-emergency situations cannot be used for peak shaving or non-emergency demand response, or to generate income for a facility to an electric grid or otherwise supply power as part of a financial arrangement with another entity.

(i) Prior to May 3, 2014, the 50 hours per year for non-emergency situations can be used for peak shaving or non-emergency demand response to generate income for a facility, or to otherwise supply power as part of a financial arrangement with another entity if the engine is operated as part of a peak shaving (load management program) with the local distribution system operator and the power is provided only to the facility itself or to support the local distribution system.

(ii) The 50 hours per year for non-emergency situations can be used to supply power as part of a financial arrangement with another entity if all of the following conditions are met:

(A) The engine is dispatched by the local balancing authority or local transmission and distribution system operator.

(B) The dispatch is intended to mitigate local transmission and/or distribution limitations so as to avert potential voltage collapse or line overloads that could lead to the interruption of power supply in a local area or region.

(C) The dispatch follows reliability, emergency operation or similar protocols that follow specific NERC, regional, state, public utility commission or local standards or guidelines.

(D) The power is provided only to the facility itself or to support the local transmission and distribution system.

(E) The owner or operator identifies and records the entity that dispatches the engine and the specific NERC, regional, state, public utility commission or local standards or guidelines that are being followed for dispatching the engine. The local balancing authority or local transmission and distribution system operator may keep these records on behalf of the engine owner or operator.

§63.6645 What notifications must I submit and when?

(a) You must submit all of the notifications in §§63.7(b) and (c), 63.8(e), (f)(4) and (f)(6), 63.9(b) through (e), and (g) and (h) that apply to you by the dates specified if you own or operate any of the following:

(1) An existing stationary RICE with a site rating of less than or equal to 500 brake HP located at a major source of HAP emissions.

(2) An existing stationary RICE located at an area source of HAP emissions.

(3) A stationary RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions.

(4) A new or reconstructed 4SLB stationary RICE with a site rating of greater than or equal to 250 HP located at a major source of HAP emissions.

(5) This requirement does not apply if you own or operate an existing stationary RICE less than 100 HP, an existing stationary emergency RICE, or an existing stationary RICE that is not subject to any numerical emission standards.

(b) As specified in §63.9(b)(2), if you start up your stationary RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions before the effective date of this subpart, you must submit an Initial Notification not later than December 13, 2004.

(c) If you start up your new or reconstructed stationary RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions on or after August 16, 2004, you must submit an Initial Notification not later than 120 days after you become subject to this subpart.

(d) As specified in §63.9(b)(2), if you start up your stationary RICE with a site rating of equal to or less than 500 brake HP located at a major source of HAP emissions before the effective date of this subpart and you are required to submit an initial notification, you must submit an Initial Notification not later than July 16, 2008.

(e) If you start up your new or reconstructed stationary RICE with a site rating of equal to or less than 500 brake HP located at a major source of HAP emissions on or after March 18, 2008 and you are required to submit an initial notification, you must submit an Initial Notification not later than 120 days after you become subject to this subpart.

(f) If you are required to submit an Initial Notification but are otherwise not affected by the requirements of this subpart, in accordance with §63.6590(b), your notification should include the information in §63.9(b)(2)(i) through (v), and a statement that your stationary RICE has no additional requirements and explain the basis of the exclusion (for example, that it operates exclusively as an emergency stationary RICE if it has a site rating of more than 500 brake HP located at a major source of HAP emissions).

(g) If you are required to conduct a performance test, you must submit a Notification of Intent to conduct a performance test at least 60 days before the performance test is scheduled to begin as required in §63.7(b)(1).

(h) If you are required to conduct a performance test or other initial compliance demonstration as specified in Tables 4 and 5 to this subpart, you must submit a Notification of Compliance Status according to §63.9(h)(2)(ii).

(1) For each initial compliance demonstration required in Table 5 to this subpart that does not include a performance test, you must submit the Notification of Compliance Status before the close of business on the 30th day following the completion of the initial compliance demonstration.

(2) For each initial compliance demonstration required in Table 5 to this subpart that includes a performance test conducted according to the requirements in Table 3 to this subpart, you must submit the Notification of Compliance Status, including the performance test results, before the close of business on the 60th day following the completion of the performance test according to §63.10(d)(2).

(i) If you own or operate an existing non-emergency CI RICE with a site rating of more than 300 HP located at an area source of HAP emissions that is certified to the Tier 1 or Tier 2 emission standards in Table 1 of 40 CFR 89.112 and subject to an enforceable state or local standard requiring engine replacement and you intend to meet management practices rather than emission limits, as specified in §63.6603(d), you must submit a notification by March 3, 2013, stating that you intend to use the provision in §63.6603(d) and identifying the state or local regulation that the engine is subject to.

(a) You must submit each report in Table 7 of this subpart that applies to you.

(b) Unless the Administrator has approved a different schedule for submission of reports under §63.10(a), you must submit each report by the date in Table 7 of this subpart and according to the requirements in paragraphs (b)(1) through (b)(9) of this section.

(1) For semiannual Compliance reports, the first Compliance report must cover the period beginning on the compliance date that is specified for your affected source in §63.6595 and ending on June 30 or December 31, whichever date is the first date following the end of the first calendar half after the compliance date that is specified for your source in §63.6595.

(2) For semiannual Compliance reports, the first Compliance report must be postmarked or delivered no later than July 31 or January 31, whichever date follows the end of the first calendar half after the compliance date that is specified for your affected source in §63.6595.

(3) For semiannual Compliance reports, each subsequent Compliance report must cover the semiannual reporting period from January 1 through June 30 or the semiannual reporting period from July 1 through December 31.

(4) For semiannual Compliance reports, each subsequent Compliance report must be postmarked or delivered no later than July 31 or January 31, whichever date is the first date following the end of the semiannual reporting period.

(5) For each stationary RICE that is subject to permitting regulations pursuant to 40 CFR part 70 or 71, and if the permitting authority has established dates for submitting semiannual reports pursuant to 40 CFR 70.6(a)(3)(iii)(A) or 40 CFR 71.6 (a)(3)(iii) (A), you may submit the first and subsequent Compliance reports according to the dates the permitting authority has established instead of according to the dates in paragraphs (b)(1) through (b)(4) of this section.

(6) For annual Compliance reports, the first Compliance report must cover the period beginning on the compliance date that is specified for your affected source in §63.6595 and ending on December 31.

(7) For annual Compliance reports, the first Compliance report must be postmarked or delivered no later than January 31 following the end of the first calendar year after the compliance date that is specified for your affected source in §63.6595.

(8) For annual Compliance reports, each subsequent Compliance report must cover the annual reporting period from January 1 through December 31.

(9) For annual Compliance reports, each subsequent Compliance report must be postmarked or delivered no later than January 31.

(c) The Compliance report must contain the information in paragraphs (c)(1) through (6) of this section.

(1) Company name and address.

(2) Statement by a responsible official, with that official's name, title, and signature, certifying the accuracy of the content of the report.

(3) Date of report and beginning and ending dates of the reporting period.

(4) If you had a malfunction during the reporting period, the compliance report must include the number, duration, and a brief description for each type of malfunction which occurred during the reporting period and which caused or may have caused any applicable emission limitation to be exceeded. The report must also include a description of actions taken by an owner or operator during a malfunction of an affected source to minimize emissions in accordance with §63.6605(b), including actions taken to correct a malfunction.

(5) If there are no deviations from any emission or operating limitations that apply to you, a statement that there were no deviations from the emission or operating limitations during the reporting period.

(6) If there were no periods during which the continuous monitoring system (CMS), including CEMS and CPMS, was out-of-control, as specified in §63.8(c)(7), a statement that there were no periods during which the CMS was out-of-control during the reporting period.

(d) For each deviation from an emission or operating limitation that occurs for a stationary RICE where you are not using a CMS to comply with the emission or operating limitations in this subpart, the Compliance report must contain the information in paragraphs (c)(1) through (4) of this section and the information in paragraphs (d)(1) and (2) of this section.

(1) The total operating time of the stationary RICE at which the deviation occurred during the reporting period.
Information on the number, duration, and cause of deviations (including unknown cause, if applicable), as applicable, and the corrective action taken.

(e) For each deviation from an emission or operating limitation occurring for a stationary RICE where you are using a CMS to comply with the emission and operating limitations in this subpart, you must include information in paragraphs (c)(1) through (4) and (e)(1) through (12) of this section.

(1) The date and time that each malfunction started and stopped.

(2) The date, time, and duration that each CMS was inoperative, except for zero (low-level) and high-level checks.

(3) The date, time, and duration that each CMS was out-of-control, including the information in §63.8(c)(8).

(4) The date and time that each deviation started and stopped, and whether each deviation occurred during a period of malfunction or during another period.

(5) A summary of the total duration of the deviation during the reporting period, and the total duration as a percent of the total source operating time during that reporting period.

(6) A breakdown of the total duration of the deviations during the reporting period into those that are due to control equipment problems, process problems, other known causes, and other unknown causes.

(7) A summary of the total duration of CMS downtime during the reporting period, and the total duration of CMS downtime as a percent of the total operating time of the stationary RICE at which the CMS downtime occurred during that reporting period.

(8) An identification of each parameter and pollutant (CO or formaldehyde) that was monitored at the stationary RICE.

(9) A brief description of the stationary RICE.

(10) A brief description of the CMS.

(11) The date of the latest CMS certification or audit.

(12) A description of any changes in CMS, processes, or controls since the last reporting period.

(f) Each affected source that has obtained a title V operating permit pursuant to 40 CFR part 70 or 71 must report all deviations as defined in this subpart in the semiannual monitoring report required by 40 CFR 70.6(a)(3)(iii)(A) or 40 CFR 71.6(a)(3)(iii)(A). If an affected source submits a Compliance report pursuant to Table 7 of this subpart along with, or as part of, the semiannual monitoring report required by 40 CFR 70.6(a)(3)(iii)(A) or 40 CFR 71.6(a)(3)(iii)(A), and the Compliance report includes all required information concerning deviations from any emission or operating limitation in this subpart, submission of the Compliance report shall be deemed to satisfy any obligation to report the same deviations in the semiannual monitoring report. However, submission of a Compliance report shall not otherwise affect any obligation the affected source may have to report deviations from permit requirements to the permit authority.

(g) If you are operating as a new or reconstructed stationary RICE which fires landfill gas or digester gas equivalent to 10 percent or more of the gross heat input on an annual basis, you must submit an annual report according to the information described in paragraphs (b)(1) through (b)(5) of this section. You must report the data specified in (g)(1) through (g)(3) of this section.

(1) Fuel flow rate of each fuel and the heating values that were used in your calculations. You must also demonstrate that the percentage of heat input provided by landfill gas or digester gas is equivalent to 10 percent or more of the total fuel consumption on an annual basis.

(2) The operating limits provided in your federally enforceable permit, and any deviations from these limits.

(3) Any problems or errors suspected with the meters.

(h) If you own or operate an emergency stationary RICE with a site rating of more than 100 brake HP that operates or is contractually obligated to be available for more than 15 hours per calendar year for the purposes specified in §63.6640(f)(2)(ii) and (iii) or that operates for the purpose specified in §63.6640(f)(4)(ii), you must submit an annual report according to the requirements in paragraphs (h)(1) through (3) of this section.

(1) The report must contain the following information:
(i) Company name and address where the engine is located.

(ii) Date of the report and beginning and ending dates of the reporting period.

(iii) Engine site rating and model year.

(iv) Latitude and longitude of the engine in decimal degrees reported to the fifth decimal place.

(v) Hours operated for the purposes specified in §63.6640(f)(2)(ii) and (iii), including the date, start time, and end time for engine operation for the purposes specified in §63.6640(f)(2)(ii) and (iii).

(vi) Number of hours the engine is contractually obligated to be available for the purposes specified in §63.6640(f)(2)(ii) and (iii).

(vii) Hours spent for operation for the purpose specified in §63.6640(f)(4)(ii), including the date, start time, and end time for engine operation for the purposes specified in §63.6640(f)(4)(ii). The report must also identify the entity that dispatched the engine and the situation that necessitated the dispatch of the engine.

(viii) If there were no deviations from the fuel requirements in §63.6604 that apply to the engine (if any), a statement that there were no deviations from the fuel requirements during the reporting period.

(ix) If there were deviations from the fuel requirements in §63.6604 that apply to the engine (if any), information on the number, duration, and cause of deviations, and the corrective action taken.

(2) The first annual report must cover the calendar year 2015 and must be submitted no later than March 31, 2016. Subsequent annual reports for each calendar year must be submitted no later than March 31 of the following calendar year.

(3) The annual report must be submitted electronically using the subpart specific reporting form in the Compliance and Emissions Data Reporting Interface (CEDRI) that is accessed through EPA's Central Data Exchange (CDX) (www.epa.gov/cdx). However, if the reporting form specific to this subpart is not available in CEDRI at the time that the report is due, the written report must be submitted to the Administrator at the appropriate address listed in §63.13.

§63.6655 What records must I keep?

(a) If you must comply with the emission and operating limitations, you must keep the records described in paragraphs (a) through (a)(5), (b)(1) through (b)(3) and (c) of this section.

(1) A copy of each notification and report that you submitted to comply with this subpart, including all documentation supporting any Initial Notification or Notification of Compliance Status that you submitted, according to the requirement in §63.10(b)(2)(xiv).

(2) Records of the occurrence and duration of each malfunction of operation (i.e., process equipment) or the air pollution control and monitoring equipment.

(3) Records of performance tests and performance evaluations as required in §63.10(b)(2)(viii).

(4) Records of all required maintenance performed on the air pollution control and monitoring equipment.

(5) Records of actions taken during periods of malfunction to minimize emissions in accordance with §63.6605(b), including corrective actions to restore malfunctioning process and air pollution control and monitoring equipment to its normal or usual manner of operation.

(b) For each CEMS or CPMS, you must keep the records listed in paragraphs (b)(1) through (3) of this section.

(1) Records described in §63.10(b)(2)(vi) through (xi).

(2) Previous (i.e., superseded) versions of the performance evaluation plan as required in §63.8(d)(3).

(3) Requests for alternatives to the relative accuracy test for CEMS or CPMS as required in §63.8(f)(6)(i), if applicable.

(c) If you are operating a new or reconstructed stationary RICE which fires landfill gas or digester gas equivalent to 10 percent or more of the gross heat input on an annual basis, you must keep the records of your daily fuel usage monitors.
(d) You must keep the records required in Table 6 of this subpart to show continuous compliance with each emission or operating limitation that applies to you.

(e) You must keep records of the maintenance conducted on the stationary RICE in order to demonstrate that you operated and maintained the stationary RICE and after-treatment control device (if any) according to your own maintenance plan if you own or operate any of the following stationary RICE:

1. An existing stationary RICE with a site rating of less than 100 brake HP located at a major source of HAP emissions.
2. An existing stationary emergency RICE.
3. An existing stationary RICE located at an area source of HAP emissions subject to management practices as shown in Table 2d to this subpart.

(f) If you own or operate any of the stationary RICE in paragraphs (f)(1) through (2) of this section, you must keep records of the hours of operation of the engine that is recorded through the non-resettable hour meter. The owner or operator must document how many hours are spent for emergency operation, including what classified the operation as emergency and how many hours are spent for non-emergency operation. If the engine is used for the purposes specified in §63.6640(f)(2)(ii) or (iii) or §63.6640(f)(4)(ii), the owner or operator must keep records of the notification of the emergency situation, and the date, start time, and end time of engine operation for these purposes.

1. An existing emergency stationary RICE with a site rating of less than or equal to 500 brake HP located at a major source of HAP emissions that does not meet the standards applicable to non-emergency engines.
2. An existing emergency stationary RICE located at an area source of HAP emissions that does not meet the standards applicable to non-emergency engines.

§63.6660 In what form and how long must I keep my records?

(a) Your records must be in a form suitable and readily available for expeditious review according to §63.10(b)(1).

(b) As specified in §63.10(b)(1), you must keep each record for 5 years following the date of each occurrence, measurement, maintenance, corrective action, report, or record.

(c) You must keep each record readily accessible in hard copy or electronic form for at least 5 years after the date of each occurrence, measurement, maintenance, corrective action, report, or record, according to §63.10(b)(1).

§63.6665 What parts of the General Provisions apply to me?

Table 8 to this subpart shows which parts of the General Provisions in §§63.1 through 63.15 apply to you. If you own or operate a new or reconstructed stationary RICE with a site rating of less than or equal to 500 brake HP located at a major source of HAP emissions (except new or reconstructed 4SLB engines greater than or equal to 250 and less than or equal to 500 brake HP), a new or reconstructed stationary RICE located at an area source of HAP emissions, or any of the following RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions, you do not need to comply with any of the requirements of the General Provisions specified in Table 8: An existing 2SLB stationary RICE, an existing 4SLB stationary RICE, an existing stationary RICE that combusts landfill or digester gas equivalent to 10 percent or more of the gross heat input on an annual basis, an existing emergency stationary RICE, or an existing limited use stationary RICE. If you own or operate any of the following RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions, you do not need to comply with the requirements in the General Provisions specified in Table 8 except for the initial notification requirements: A new stationary RICE that combusters landfill gas or digester gas equivalent to 10 percent or more of the gross heat input on an annual basis, a new emergency stationary RICE, or a new limited use stationary RICE.

[75 FR 9678, Mar. 3, 2010]
§63.6670 Who implements and enforces this subpart?

(a) This subpart is implemented and enforced by the U.S. EPA, or a delegated authority such as your State, local, or tribal agency. If the U.S. EPA Administrator has delegated authority to your State, local, or tribal agency, then that agency (as well as the U.S. EPA) has the authority to implement and enforce this subpart. You should contact your U.S. EPA Regional Office to find out whether this subpart is delegated to your State, local, or tribal agency.

(b) In delegating implementation and enforcement authority of this subpart to a State, local, or tribal agency under 40 CFR part 63, subpart E, the authorities contained in paragraph (c) of this section are retained by the Administrator of the U.S. EPA and are not transferred to the State, local, or tribal agency.

(c) The authorities that will not be delegated to State, local, or tribal agencies are:

1. Approval of alternatives to the non-opacity emission limitations and operating limitations in §63.6600 under §63.6(g).
2. Approval of major alternatives to test methods under §63.7(e)(2)(ii) and (f) and as defined in §63.90.
3. Approval of major alternatives to monitoring under §63.8(f) and as defined in §63.90.
4. Approval of major alternatives to recordkeeping and reporting under §63.10(f) and as defined in §63.90.
5. Approval of a performance test which was conducted prior to the effective date of the rule, as specified in §63.6610(b).

§63.6675 What definitions apply to this subpart?

Terms used in this subpart are defined in the Clean Air Act (CAA); in 40 CFR 63.2, the General Provisions of this part; and in this section as follows:

Alaska Railbelt Grid means the service areas of the six regulated public utilities that extend from Fairbanks to Anchorage and the Kenai Peninsula. These utilities are Golden Valley Electric Association; Chugach Electric Association; Matanuska Electric Association; Homer Electric Association; Anchorage Municipal Light & Power; and the City of Seward Electric System.

Area source means any stationary source of HAP that is not a major source as defined in part 63.

Associated equipment as used in this subpart and as referred to in section 112(n)(4) of the CAA, means equipment associated with an oil or natural gas exploration or production well, and includes all equipment from the well bore to the point of custody transfer, except glycol dehydration units, storage vessels with potential for flash emissions, combustion turbines, and stationary RICE.

Backup power for renewable energy means an engine that provides backup power to a facility that generates electricity from renewable energy resources, as that term is defined in Alaska Statute 42.45.045(l)(5) (incorporated by reference, see §63.14).

Black start engine means an engine whose only purpose is to start up a combustion turbine.

CAA means the Clean Air Act (42 U.S.C. 7401 et seq., as amended by Public Law 101-549, 104 Stat. 2399).

Commercial emergency stationary RICE means an emergency stationary RICE used in commercial establishments such as office buildings, hotels, stores, telecommunications facilities, restaurants, financial institutions such as banks, doctor's offices, and sports and performing arts facilities.

Compression ignition means relating to a type of stationary internal combustion engine that is not a spark ignition engine.

Custody transfer means the transfer of hydrocarbon liquids or natural gas: After processing and/or treatment in the producing operations, or from storage vessels or automatic transfer facilities or other such equipment, including product loading racks, to pipelines or any other forms of transportation. For the purposes of this subpart, the point at which such liquids or natural gas enters a natural gas processing plant is a point of custody transfer.

Deviation means any instance in which an affected source subject to this subpart, or an owner or operator of such a source:
(1) Fails to meet any requirement or obligation established by this subpart, including but not limited to any emission limitation or operating limitation;

(2) Fails to meet any term or condition that is adopted to implement an applicable requirement in this subpart and that is included in the operating permit for any affected source required to obtain such a permit; or

(3) Fails to meet any emission limitation or operating limitation in this subpart during malfunction, regardless or whether or not such failure is permitted by this subpart.

(4) Fails to satisfy the general duty to minimize emissions established by §63.6(e)(1)(i).

Diesel engine means any stationary RICE in which a high boiling point liquid fuel injected into the combustion chamber ignites when the air charge has been compressed to a temperature sufficiently high for auto-ignition. This process is also known as compression ignition.

Diesel fuel means any liquid obtained from the distillation of petroleum with a boiling point of approximately 150 to 360 degrees Celsius. One commonly used form is fuel oil number 2. Diesel fuel also includes any non-distillate fuel with comparable physical and chemical properties (e.g. biodiesel) that is suitable for use in compression ignition engines.

Digester gas means any gaseous by-product of wastewater treatment typically formed through the anaerobic decomposition of organic waste materials and composed principally of methane and CO$_2$.

Dual-fuel engine means any stationary RICE in which a liquid fuel (typically diesel fuel) is used for compression ignition and gaseous fuel (typically natural gas) is used as the primary fuel.

Emergency stationary RICE means any stationary reciprocating internal combustion engine that meets all of the criteria in paragraphs (1) through (3) of this definition. All emergency stationary RICE must comply with the requirements specified in §63.6640(f) in order to be considered emergency stationary RICE. If the engine does not comply with the requirements specified in §63.6640(f), then it is not considered to be an emergency stationary RICE under this subpart.

(1) The stationary RICE is operated to provide electrical power or mechanical work during an emergency situation. Examples include stationary RICE used to produce power for critical networks or equipment (including power supplied to portions of a facility) when electric power from the local utility (or the normal power source, if the facility runs on its own power production) is interrupted, or stationary RICE used to pump water in the case of fire or flood, etc.

(2) The stationary RICE is operated under limited circumstances for situations not included in paragraph (1) of this definition, as specified in §63.6640(f).

(3) The stationary RICE operates as part of a financial arrangement with another entity in situations not included in paragraph (1) of this definition only as allowed in §63.6640(f)(2)(ii) or (iii) and §63.6640(f)(4)(i) or (ii).

Engine startup means the time from initial start until applied load and engine and associated equipment reaches steady state or normal operation. For stationary engine with catalytic controls, engine startup means the time from initial start until applied load and engine and associated equipment, including the catalyst, reaches steady state or normal operation.

Four-stroke engine means any type of engine which completes the power cycle in two crankshaft revolutions, with intake and compression strokes in the first revolution and power and exhaust strokes in the second revolution.

Gaseous fuel means a material used for combustion which is in the gaseous state at standard atmospheric temperature and pressure conditions.

Gasoline means any fuel sold in any State for use in motor vehicles and motor vehicle engines, or nonroad or stationary engines, and commonly or commercially known or sold as gasoline.

Glycol dehydration unit means a device in which a liquid glycol (including, but not limited to, ethylene glycol, diethylene glycol, or triethylene glycol) absorbent directly contacts a natural gas stream and absorbs water in a contact tower or absorption column (absorber). The glycol contacts and absorbs water vapor and other gas stream constituents from the natural gas and becomes "rich" glycol. This glycol is then regenerated in the glycol dehydration unit reboiler. The "lean" glycol is then recycled.

Hazardous air pollutants (HAP) means any air pollutants listed in or pursuant to section 112(b) of the CAA.

Institutional emergency stationary RICE means an emergency stationary RICE used in institutional establishments such as medical centers, nursing homes, research centers, institutions of higher education, correctional facilities, elementary and secondary schools, libraries, religious establishments, police stations, and fire stations.
ISO standard day conditions means 288 degrees Kelvin (15 degrees Celsius), 60 percent relative humidity and 101.3 kilopascals pressure.

Landfill gas means a gaseous by-product of the land application of municipal refuse typically formed through the anaerobic decomposition of waste materials and composed principally of methane and CO₂.

Lean burn engine means any two-stroke or four-stroke spark ignited engine that does not meet the definition of a rich burn engine.

Limited use stationary RICE means any stationary RICE that operates less than 100 hours per year.

Liquefied petroleum gas means any liquefied hydrocarbon gas obtained as a by-product in petroleum refining of natural gas production.

Liquid fuel means any fuel in liquid form at standard temperature and pressure, including but not limited to diesel, residual/crude oil, kerosene/naphtha (jet fuel), and gasoline.

Major Source, as used in this subpart, shall have the same meaning as in §63.2, except that:

1. Emissions from any oil or gas exploration or production well (with its associated equipment (as defined in this section)) and emissions from any pipeline compressor station or pump station shall not be aggregated with emissions from other similar units, to determine whether such emission points or stations are major sources, even when emission points are in a contiguous area or under common control;

2. For oil and gas production facilities, emissions from processes, operations, or equipment that are not part of the same oil and gas production facility, as defined in §63.1271 of subpart HHH of this part, shall not be aggregated;

3. For production field facilities, only HAP emissions from glycol dehydration units, storage vessel with the potential for flash emissions, combustion turbines and reciprocating internal combustion engines shall be aggregated for a major source determination; and

4. Emissions from processes, operations, and equipment that are not part of the same natural gas transmission and storage facility, as defined in §63.1271 of subpart HHH of this part, shall not be aggregated.

Malfunction means any sudden, infrequent, and not reasonably preventable failure of air pollution control equipment, process equipment, or a process to operate in a normal or usual manner which causes, or has the potential to cause, the emission limitations in an applicable standard to be exceeded. Failures that are caused in part by poor maintenance or careless operation are not malfunctions.

Natural gas means a naturally occurring mixture of hydrocarbon and non-hydrocarbon gases found in geologic formations beneath the Earth's surface, of which the principal constituent is methane. Natural gas may be field or pipeline quality.

Non-selective catalytic reduction (NSCR) means an add-on catalytic nitrogen oxides (NOₓ) control device for rich burn engines that, in a two-step reaction, promotes the conversion of excess oxygen, NOₓ, CO, and volatile organic compounds (VOC) into CO₂, nitrogen, and water.

Oil and gas production facility as used in this subpart means any grouping of equipment where hydrocarbon liquids are processed, upgraded (i.e., remove impurities or other constituents to meet contract specifications), or stored prior to the point of custody transfer; or where natural gas is processed, upgraded, or stored prior to entering the natural gas transmission and storage source category. For purposes of a major source determination, facility (including a building, structure, or installation) means oil and natural gas production and processing equipment that is located within the boundaries of an individual surface site as defined in this section. Equipment that is part of a facility will typically be located within close proximity to other equipment located at the same facility. Pieces of production equipment or groupings of equipment located on different oil and gas leases, mineral fee tracts, lease tracts, subsurface or surface unit areas, surface fee tracts, surface lease tracts, or separate surface sites, whether or not connected by a road, waterway, power line or pipeline, shall not be considered part of the same facility. Examples of facilities in the oil and natural gas production source category include, but are not limited to, well sites, satellite tank batteries, central tank batteries, a compressor station that transports natural gas to a natural gas processing plant, and natural gas processing plants.

Oxidation catalyst means an add-on catalytic control device that controls CO and VOC by oxidation.

Peaking unit or engine means any standby engine intended for use during periods of high demand that are not emergencies.
Percent load means the fractional power of an engine compared to its maximum manufacturer's design capacity at engine site conditions. Percent load may range between 0 percent to above 100 percent.

Potential to emit means the maximum capacity of a stationary source to emit a pollutant under its physical and operational design. Any physical or operational limitation on the capacity of the stationary source to emit a pollutant, including air pollution control equipment and restrictions on hours of operation or on the type or amount of material combusted, stored, or processed, shall be treated as part of its design if the limitation or the effect it would have on emissions is federally enforceable. For oil and natural gas production facilities subject to subpart HH of this part, the potential to emit provisions in §63.760(a) may be used. For natural gas transmission and storage facilities subject to subpart HHH of this part, the maximum annual facility gas throughput for storage facilities may be determined according to §63.1270(a)(1) and the maximum annual throughput for transmission facilities may be determined according to §63.1270(a)(2).

Production field facility means those oil and gas production facilities located prior to the point of custody transfer.

Production well means any hole drilled in the earth from which crude oil, condensate, or field natural gas is extracted.

Propane means a colorless gas derived from petroleum and natural gas, with the molecular structure C₃H₈.

Remote stationary RICE means stationary RICE meeting any of the following criteria:

(1) Stationary RICE located in an offshore area that is beyond the line of ordinary low water along that portion of the coast of the United States that is in direct contact with the open seas and beyond the line marking the seaward limit of inland waters.

(2) Stationary RICE located on a pipeline segment that meets both of the criteria in paragraphs (2)(i) and (ii) of this definition.

(i) A pipeline segment with 10 or fewer buildings intended for human occupancy and no buildings with four or more stories within 220 yards (200 meters) on either side of the centerline of any continuous 1-mile (1.6 kilometers) length of pipeline. Each separate dwelling unit in a multiple dwelling unit building is counted as a separate building intended for human occupancy.

(ii) The pipeline segment does not lie within 100 yards (91 meters) of either a building or a small, well-defined outside area (such as a playground, recreation area, outdoor theater, or other place of public assembly) that is occupied by 20 or more persons on at least 5 days a week for 10 weeks in any 12-month period. The days and weeks need not be consecutive. The building or area is considered occupied for a full day if it is occupied for any portion of the day.

(iii) For purposes of this paragraph (2), the term pipeline segment means all parts of those physical facilities through which gas moves in transportation, including but not limited to pipe, valves, and other appurtenance attached to pipe, compressor units, metering stations, regulator stations, delivery stations, holders, and fabricated assemblies. Stationary RICE located within 50 yards (46 meters) of the pipeline segment providing power for equipment on a pipeline segment are part of the pipeline segment. Transportation of gas means the gathering, transmission, or distribution of gas by pipeline, or the storage of gas. A building is intended for human occupancy if its primary use is for a purpose involving the presence of humans.

(3) Stationary RICE that are not located on gas pipelines and that have 5 or fewer buildings intended for human occupancy and no buildings with four or more stories within a 0.25 mile radius around the engine. A building is intended for human occupancy if its primary use is for a purpose involving the presence of humans.

Residential emergency stationary RICE means an emergency stationary RICE used in residential establishments such as homes or apartment buildings.

Responsible official means responsible official as defined in 40 CFR 70.2.

Rich burn engine means any four-stroke spark ignited engine where the manufacturer's recommended operating air/fuel ratio divided by the stoichiometric air/fuel ratio at full load conditions is less than or equal to 1.1. Engines originally manufactured as rich burn engines, but modified prior to December 19, 2002 with passive emission control technology for NOₓ (such as pre-combustion chambers) will be considered lean burn engines. Also, existing engines where there are no manufacturer’s recommendations regarding air/fuel ratio will be considered a rich burn engine if the excess oxygen content of the exhaust at full load conditions is less than or equal to 2 percent.

Site-rated HP means the maximum manufacturer's design capacity at engine site conditions.

Spark ignition means relating to either: A gasoline-fueled engine; or any other type of engine with a spark plug (or other sparking device) and with operating characteristics significantly similar to the theoretical Otto combustion cycle. Spark ignition engines usually use a throttle to regulate intake air flow to control power during normal operation. Dual-fuel engines in which a liquid fuel (typically diesel fuel) is used for CI and gaseous fuel (typically natural gas) is used as the primary fuel at an annual average ratio of less than 2 parts diesel fuel to 100 parts total fuel on an energy equivalent basis are spark ignition engines.

Production field facility means those oil and gas production facilities located prior to the point of custody transfer.
Stationary reciprocating internal combustion engine (RICE) means any reciprocating internal combustion engine which uses reciprocating motion to convert heat energy into mechanical work and which is not mobile. Stationary RICE differ from mobile RICE in that a stationary RICE is not a non-road engine as defined at 40 CFR 1068.30, and is not used to propel a motor vehicle or a vehicle used solely for competition.

Stationary RICE test cell/stand means an engine test cell/stand, as defined in subpart PPPPPP of this part, that tests stationary RICE.

Stoichiometric means the theoretical air-to-fuel ratio required for complete combustion.

Storage vessel with the potential for flash emissions means any storage vessel that contains a hydrocarbon liquid with a stock tank gas-to-oil ratio equal to or greater than 0.31 cubic meters per liter and an American Petroleum Institute gravity equal to or greater than 40 degrees and an actual annual average hydrocarbon liquid throughput equal to or greater than 79,500 liters per day. Flash emissions occur when dissolved hydrocarbons in the fluid evolve from solution when the fluid pressure is reduced.

Subpart means 40 CFR part 63, subpart ZZZZ.

Surface site means any combination of one or more graded pad sites, gravel pad sites, foundations, platforms, or the immediate physical location upon which equipment is physically affixed.

Two-stroke engine means a type of engine which completes the power cycle in single crankshaft revolution by combining the intake and compression operations into one stroke and the power and exhaust operations into a second stroke. This system requires auxiliary scavenging and inherently runs lean of stoichiometric.

Table 1a to Subpart ZZZZ of Part 63—Emission Limitations for Existing, New, and Reconstructed Spark Ignition, 4SRB Stationary RICE >500 HP Located at a Major Source of HAP Emissions

As stated in §§63.6600 and 63.6640, you must comply with the following emission limitations at 100 percent load plus or minus 10 percent for existing, new and reconstructed 4SRB stationary RICE >500 HP located at a major source of HAP emissions:

<table>
<thead>
<tr>
<th>For each 4SRB stationary RICE</th>
<th>You must meet the following emission limitation, except during periods of startup . . .</th>
<th>During periods of startup you must . . .</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. Reduce formaldehyde emissions by 76 percent or more. If you commenced construction or reconstruction between December 19, 2002 and June 15, 2004, you may reduce formaldehyde emissions by 75 percent or more until June 15, 2007 or</td>
<td>Minimize the engine's time spent at idle and minimize the engine's startup time at startup to a period needed for appropriate and safe loading of the engine, not to exceed 30 minutes, after which time the non-startup emission limitations apply.¹</td>
<td></td>
</tr>
<tr>
<td>b. Limit the concentration of formaldehyde in the stationary RICE exhaust to 350 ppbvd or less at 15 percent O₂</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

¹ Sources can petition the Administrator pursuant to the requirements of 40 CFR 63.6(g) for alternative work practices.

Table 1b to Subpart ZZZZ of Part 63—Operating Limitations for Existing, New, and Reconstructed SI 4SRB Stationary RICE >500 HP Located at a Major Source of HAP Emissions

As stated in §§63.6600, 63.6603, 63.6630 and 63.6640, you must comply with the following operating limitations for existing, new and reconstructed 4SRB stationary RICE >500 HP located at a major source of HAP emissions:

<table>
<thead>
<tr>
<th>For each . . .</th>
<th>You must meet the following operating limitation, except during periods of startup . . .</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. existing, new and reconstructed 4SRB stationary RICE >500 HP located at a major source of HAP emissions complying with the requirement to reduce formaldehyde emissions by 76 percent or more (or by 75 percent or more, if applicable) and using NSCR; or existing, new and reconstructed 4SRB stationary RICE >500 HP located at a major source of HAP emissions complying with the requirement to limit the concentration of formaldehyde in the stationary RICE exhaust to 350 ppbvd or less at 15 percent O₂ and using NSCR;</td>
<td>a. maintain your catalyst so that the pressure drop across the catalyst does not change by more than 2 inches of water at 100 percent load plus or minus 10 percent from the pressure drop across the catalyst measured during the initial performance test; and b. maintain the temperature of your stationary RICE exhaust so that the catalyst inlet temperature is greater than or equal to 750 ºF and less than or equal to 1250 ºF.¹</td>
</tr>
<tr>
<td>2. existing, new and reconstructed 4SRB stationary RICE >500 HP located at a major source of HAP emissions complying with the requirement to reduce</td>
<td>Comply with any operating limitations approved by the Administrator.</td>
</tr>
</tbody>
</table>

¹ Sources can petition the Administrator pursuant to the requirements of 40 CFR 63.6(g) for alternative work practices.
formaldehyde emissions by 76 percent or more (or by 75 percent or more, if applicable) and not using NSCR; or

existing, new and reconstructed 4SRB stationary RICE >500 HP located at a major source of HAP emissions complying with the requirement to limit the concentration of formaldehyde in the stationary RICE exhaust to 350 ppbvd or less at 15 percent O₂ and not using NSCR.

Sources can petition the Administrator pursuant to the requirements of 40 CFR 63.8(f) for a different temperature range.

[78 FR 6706, Jan. 30, 2013]

Table 2a to Subpart ZZZZ of Part 63—Emission Limitations for New and Reconstructed 2SLB and Compression Ignition Stationary RICE >500 HP and New and Reconstructed 4SLB Stationary RICE ≥250 HP Located at a Major Source of HAP Emissions

As stated in §§63.6600 and 63.6640, you must comply with the following emission limitations for new and reconstructed lean burn and new and reconstructed compression ignition stationary RICE at 100 percent load plus or minus 10 percent:

<table>
<thead>
<tr>
<th>For each . . .</th>
<th>You must meet the following emission limitation, except during periods of startup . . .</th>
<th>During periods of startup you must . . .</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. 2SLB stationary RICE</td>
<td>a. Reduce CO emissions by 58 percent or more; or b. Limit concentration of formaldehyde in the stationary RICE exhaust to 12 ppmvd or less at 15 percent O₂. If you commenced construction or reconstruction between December 19, 2002 and June 15, 2004, you may limit concentration of formaldehyde to 17 ppmvd or less at 15 percent O₂ until June 15, 2007.</td>
<td>Minimize the engine's time spent at idle and minimize the engine's startup time at startup to a period needed for appropriate and safe loading of the engine, not to exceed 30 minutes, after which time the non-startup emission limitations apply.¹</td>
</tr>
<tr>
<td>2. 4SLB stationary RICE</td>
<td>a. Reduce CO emissions by 93 percent or more; or b. Limit concentration of formaldehyde in the stationary RICE exhaust to 14 ppmvd or less at 15 percent O₂.</td>
<td></td>
</tr>
<tr>
<td>3. CI stationary RICE</td>
<td>a. Reduce CO emissions by 70 percent or more; or b. Limit concentration of formaldehyde in the stationary RICE exhaust to 580 ppbvd or less at 15 percent O₂.</td>
<td></td>
</tr>
</tbody>
</table>

¹Sources can petition the Administrator pursuant to the requirements of 40 CFR 63.6(g) for alternative work practices.

[75 FR 9680, Mar. 3, 2010]

Table 2b to Subpart ZZZZ of Part 63—Operating Limitations for New and Reconstructed 2SLB and CI Stationary RICE >500 HP Located at a Major Source of HAP Emissions, New and Reconstructed 4SLB Stationary RICE ≥250 HP Located at a Major Source of HAP Emissions, Existing CI Stationary RICE >500 HP

As stated in §§63.6600, 63.6601, 63.6603, 63.6630, and 63.6640, you must comply with the following operating limitations for new and reconstructed 2SLB and CI stationary RICE >500 HP located at a major source of HAP emissions; new and reconstructed 4SLB stationary RICE ≥250 HP located at a major source of HAP emissions; and existing CI stationary RICE >500 HP:

<table>
<thead>
<tr>
<th>For each . . .</th>
<th>You must meet the following operating limitation, except during periods of startup . . .</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. New and reconstructed 2SLB and CI stationary RICE >500 HP located at a major source of HAP emissions and new and reconstructed 4SLB stationary RICE ≥250 HP located at a major source of HAP emissions complying with the requirement to reduce CO emissions and using an oxidation catalyst; and New and reconstructed 2SLB and CI stationary RICE >500 HP located at a major source of HAP emissions and new and reconstructed 4SLB stationary RICE ≥250 HP located at a major source of HAP emissions complying with the requirement to limit the concentration of formaldehyde in the stationary RICE exhaust and using an oxidation catalyst.</td>
<td>a. maintain your catalyst so that the pressure drop across the catalyst does not change by more than 2 inches of water at 100 percent load plus or minus 10 percent from the pressure drop across the catalyst that was measured during the initial performance test; and b. maintain the temperature of your stationary RICE exhaust so that the catalyst inlet temperature is greater than or equal to 450 °F and less than or equal to 1350 °F.¹</td>
</tr>
<tr>
<td>2. Existing CI stationary RICE >500 HP complying with the requirement to limit or reduce the concentration of CO in the stationary RICE exhaust and using an oxidation catalyst</td>
<td>a. maintain your catalyst so that the pressure drop across the catalyst does not change by more than 2 inches of water from the pressure drop across the catalyst that was measured during the initial performance test; and b. maintain the temperature of your stationary RICE exhaust so that the catalyst inlet temperature is greater than or equal to 450 °F and less than or equal to 1350 °F.¹</td>
</tr>
<tr>
<td>3. New and reconstructed 2SLB and CI stationary RICE >500 HP located at a major source of HAP emissions and new and reconstructed 4SLB stationary RICE ≥250 HP located at a major source of HAP emissions complying with the requirement to reduce CO emissions and not using an oxidation catalyst; and Comply with any operating limitations approved by the Administrator.</td>
<td></td>
</tr>
</tbody>
</table>
New and reconstructed 2SLB and CI stationary RICE >500 HP located at a major source of HAP emissions and new and reconstructed 4SLB stationary RICE ≥250 HP located at a major source of HAP emissions complying with the requirement to limit the concentration of formaldehyde in the stationary RICE exhaust and not using an oxidation catalyst; and existing CI stationary RICE >500 HP complying with the requirement to limit or reduce the concentration of CO in the stationary RICE exhaust and not using an oxidation catalyst.

Sources can petition the Administrator pursuant to the requirements of 40 CFR 63.8(f) for a different temperature range.

[78 FR 6707, Jan. 30, 2013]

Table 2c to Subpart ZZZZ of Part 63—Requirements for Existing Compression Ignition Stationary RICE Located at a Major Source of HAP Emissions and Existing Spark Ignition Stationary RICE ≤500 HP Located at a Major Source of HAP Emissions

As stated in §§63.6600, 63.6602, and 63.6640, you must comply with the following requirements for existing compression ignition stationary RICE located at a major source of HAP emissions and existing spark ignition stationary RICE ≤500 HP located at a major source of HAP emissions:

<table>
<thead>
<tr>
<th>For each . . .</th>
<th>You must meet the following requirement, except during periods of startup . . .</th>
<th>During periods of startup you must . . .</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Emergency stationary CI RICE and black start stationary CI RICE</td>
<td>a. Change oil and filter every 500 hours of operation or annually, whichever comes first.</td>
<td>Minimize the engine's time spent at idle and minimize the engine's startup time at startup to a period needed for appropriate and safe loading of the engine, not to exceed 30 minutes, after which time the non-startup emission limitations apply.</td>
</tr>
<tr>
<td>2. Non-Emergency, non-black start stationary CI RICE <100 HP</td>
<td>a. Change oil and filter every 1,000 hours of operation or annually, whichever comes first.</td>
<td></td>
</tr>
<tr>
<td>3. Non-Emergency, non-black start stationary CI RICE 100≤HP≤300 HP</td>
<td>Limit concentration of CO in the stationary RICE exhaust to 230 ppmvd or less at 15 percent O₂.</td>
<td></td>
</tr>
<tr>
<td>4. Non-Emergency, non-black start stationary RICE 300<HP≤500</td>
<td>a. Limit concentration of CO in the stationary RICE exhaust to 49 ppmvd or less at 15 percent O₂; or b. Reduce CO emissions by 70 percent or more.</td>
<td></td>
</tr>
<tr>
<td>5. Non-Emergency, non-black start stationary CI RICE >500 HP</td>
<td>a. Limit concentration of CO in the stationary RICE exhaust to 23 ppmvd or less at 15 percent O₂; or b. Reduce CO emissions by 70 percent or more.</td>
<td></td>
</tr>
<tr>
<td>6. Emergency stationary SI RICE and black start stationary SI RICE</td>
<td>a. Change oil and filter every 500 hours of operation or annually, whichever comes first.</td>
<td></td>
</tr>
<tr>
<td>7. Non-Emergency, non-black start stationary SI RICE <100 HP that are not 2SLB stationary RICE</td>
<td>a. Change oil and filter every 1,440 hours of operation or annually, whichever comes first.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>b. Inspect spark plugs every 1,440 hours of operation or annually, whichever comes first, and replace as necessary.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>c. Inspect all hoses and belts every 1,440 hours of operation or annually, whichever comes first, and replace as necessary.</td>
<td></td>
</tr>
</tbody>
</table>
Table 2d to Subpart ZZZZ of Part 63—Requirements for Existing Stationary RICE Located at Area Sources of HAP Emissions

As stated in §§63.6603 and 63.6640, you must comply with the following requirements for existing stationary RICE located at area sources of HAP emissions:

<table>
<thead>
<tr>
<th>For each . . .</th>
<th>You must meet the following requirement, except during periods of startup . . .</th>
<th>During periods of startup you must . . .</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Non-Emergency, non-black start CI stationary RICE ≤300 HP</td>
<td>a. Change oil and filter every 1,000 hours of operation or annually, whichever comes first;(^1) b. Inspect air cleaner every 1,000 hours of operation or annually, whichever comes first, and replace as necessary; c. Inspect all hoses and belts every 500 hours of operation or annually, whichever comes first, and replace as necessary.</td>
<td>Minimize the engine's time spent at idle and minimize the engine's startup time at startup to a period needed for appropriate and safe loading of the engine, not to exceed 30 minutes, after which time the non-startup emission limitations apply.</td>
</tr>
<tr>
<td>2. Non-Emergency, non-black start CI stationary RICE 300<HP≤500</td>
<td>a. Limit concentration of CO in the stationary RICE exhaust to 49 ppmvd at 15 percent O(_2); or b. Reduce CO emissions by 70 percent or more.</td>
<td></td>
</tr>
<tr>
<td>3. Non-Emergency, non-black start CI stationary RICE >500 HP</td>
<td>a. Limit concentration of CO in</td>
<td></td>
</tr>
</tbody>
</table>

\(^1\)If an emergency engine is operating during an emergency and it is not possible to shut down the engine in order to perform the work practice requirements on the schedule required in Table 2c of this subpart, or if performing the work practice on the required schedule would otherwise pose an unacceptable risk under federal, state, or local law, the work practice can be delayed until the emergency is over or the unacceptable risk under federal, state, or local law has abated. The work practice should be performed as soon as practicable after the emergency has ended or the unacceptable risk under federal, state, or local law has abated. Sources must report any failure to perform the work practice on the schedule required and the federal, state or local law under which the risk was deemed unacceptable.

\(^2\)Sources have the option to utilize an oil analysis program as described in §63.6625(i) or (j) in order to extend the specified oil change requirement in Table 2c of this subpart.

\(^3\)Sources can petition the Administrator pursuant to the requirements of 40 CFR 63.6(g) for alternative work practices.

[78 FR 6708, Jan. 30, 2013, as amended at 78 FR 14457, Mar. 6, 2013]
<table>
<thead>
<tr>
<th>4. Emergency stationary CI RICE and black start stationary CI RICE.</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. Change oil and filter every 500 hours of operation or annually, whichever comes first;</td>
<td>1</td>
</tr>
<tr>
<td>b. Inspect air cleaner every 1,000 hours of operation or annually, whichever comes first, and replace as necessary; and</td>
<td></td>
</tr>
<tr>
<td>c. Inspect all hoses and belts every 500 hours of operation or annually, whichever comes first, and replace as necessary.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5. Emergency stationary SI RICE; black start stationary SI RICE; non-emergency, non-black start 4SLB stationary RICE >500 HP that operate 24 hours or less per calendar year; non-emergency, non-black start 4SRB stationary RICE >500 HP that operate 24 hours or less per calendar year.</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. Change oil and filter every 500 hours of operation or annually, whichever comes first;</td>
<td>1</td>
</tr>
<tr>
<td>b. Inspect spark plugs every 1,000 hours of operation or annually, whichever comes first, and replace as necessary; and</td>
<td></td>
</tr>
<tr>
<td>c. Inspect all hoses and belts every 500 hours of operation or annually, whichever comes first, and replace as necessary.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>6. Non-emergency, non-black start 2SLB stationary RICE</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a. Change oil and filter every 4,320 hours of operation or annually, whichever comes first;</td>
<td>1</td>
</tr>
<tr>
<td>b. Inspect spark plugs every 4,320 hours of operation or annually, whichever comes first, and replace as necessary; and</td>
<td></td>
</tr>
<tr>
<td>c. Inspect all hoses and belts every 4,320 hours of operation or annually, whichever comes first, and replace as necessary.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>7. Non-emergency, non-black start 4SLB stationary RICE ≤500 HP</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a. Change oil and filter every 1,440 hours of operation or annually, whichever comes first;</td>
<td>1</td>
</tr>
<tr>
<td>b. Inspect spark plugs every 1,440 hours of operation or annually, whichever comes first, and replace as necessary; and</td>
<td></td>
</tr>
<tr>
<td>c. Inspect all hoses and belts every 1,440 hours of operation or annually, whichever comes first, and replace as necessary.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>8. Non-emergency, non-black start 4SLB remote stationary RICE >500 HP</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a. Change oil and filter every 2,160 hours of operation or annually, whichever comes first;</td>
<td>1</td>
</tr>
<tr>
<td>b. Inspect spark plugs every 2,160 hours of operation or annually, whichever comes first, and replace as necessary; and</td>
<td></td>
</tr>
<tr>
<td>c. Inspect all hoses and belts every 2,160 hours of operation or annually, whichever comes first, and replace as necessary.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>9. Non-emergency, non-black start 4SLB stationary RICE >500 HP that are not remote stationary RICE and that operate more than 24 hours per calendar year</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Install an oxidation catalyst to reduce HAP emissions from the stationary RICE.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>10. Non-emergency, non-black start 4SRB stationary RICE ≤500 HP</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a. Change oil and filter every 1,440 hours of operation or annually, whichever comes first;</td>
<td>1</td>
</tr>
</tbody>
</table>
b. Inspect spark plugs every 1,440 hours of operation or annually, whichever comes first, and replace as necessary; and

c. Inspect all hoses and belts every 1,440 hours of operation or annually, whichever comes first, and replace as necessary.

11. Non-emergency, non-black start 4SRB remote stationary RICE >500 HP

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a.</td>
<td>Change oil and filter every 2,160 hours of operation or annually, whichever comes first; ¹</td>
<td></td>
</tr>
<tr>
<td>b.</td>
<td>Inspect spark plugs every 2,160 hours of operation or annually, whichever comes first, and replace as necessary; and</td>
<td></td>
</tr>
<tr>
<td>c.</td>
<td>Inspect all hoses and belts every 2,160 hours of operation or annually, whichever comes first, and replace as necessary.</td>
<td></td>
</tr>
</tbody>
</table>

12. Non-emergency, non-black start 4SRB stationary RICE >500 HP that are not remote stationary RICE and that operate more than 24 hours per calendar year

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Install NSCR to reduce HAP emissions from the stationary RICE.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

13. Non-emergency, non-black start stationary RICE which combusts landfill or digester gas equivalent to 10 percent or more of the gross heat input on an annual basis

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a.</td>
<td>Change oil and filter every 1,440 hours of operation or annually, whichever comes first; ¹</td>
<td></td>
</tr>
<tr>
<td>b.</td>
<td>Inspect spark plugs every 1,440 hours of operation or annually, whichever comes first, and replace as necessary; and</td>
<td></td>
</tr>
<tr>
<td>c.</td>
<td>Inspect all hoses and belts every 1,440 hours of operation or annually, whichever comes first, and replace as necessary.</td>
<td></td>
</tr>
</tbody>
</table>

¹Sources have the option to utilize an oil analysis program as described in §63.6625(i) or (j) in order to extend the specified oil change requirement in Table 2d of this subpart.

If an emergency engine is operating during an emergency and it is not possible to shut down the engine in order to perform the management practice requirements on the schedule required in Table 2d of this subpart, or if performing the management practice on the required schedule would otherwise pose an unacceptable risk under federal, state, or local law, the management practice can be delayed until the emergency is over or the unacceptable risk under federal, state, or local law has abated. The management practice should be performed as soon as practicable after the emergency has ended or the unacceptable risk under federal, state, or local law has abated. Sources must report any failure to perform the management practice on the schedule required and the federal, state or local law under which the risk was deemed unacceptable.

[78 FR 6709, Jan. 30, 2013]

Table 3 to Subpart ZZZZ of Part 63—Subsequent Performance Tests

As stated in §§63.6615 and 63.6620, you must comply with the following subsequent performance test requirements:

<table>
<thead>
<tr>
<th></th>
<th>Complying with the requirement to . . .</th>
<th>You must . . .</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. New or reconstructed 2SLB stationary RICE >500 HP located at major sources; new or reconstructed 4SLB stationary RICE ≥250 HP located at major sources; and new or reconstructed CI stationary RICE >500 HP located at major sources</td>
<td>Reduce CO emissions and not using a CEMS</td>
<td>Conduct subsequent performance tests semiannually. ¹</td>
</tr>
<tr>
<td>2. 4SRB stationary RICE ≥5,000 HP located at major sources</td>
<td>Reduce formaldehyde emissions</td>
<td>Conduct subsequent performance tests semiannually. ¹</td>
</tr>
<tr>
<td>3. Stationary RICE >500 HP located at major sources and new or reconstructed 4SLB stationary RICE 250≤HP≤500 located at major sources</td>
<td>Limit the concentration of formaldehyde in the stationary RICE exhaust</td>
<td>Conduct subsequent performance tests semiannually. ¹</td>
</tr>
<tr>
<td>4. Existing non-emergency, non-black start CI stationary RICE >500 HP that are not limited use stationary RICE</td>
<td>Limit or reduce CO emissions and not using a CEMS</td>
<td>Conduct subsequent performance tests every 8,760 hours or 3 years, whichever comes first.</td>
</tr>
<tr>
<td>5. Existing non-emergency, non-black start CI stationary RICE >500 HP that are limited use stationary RICE</td>
<td>Limit or reduce CO emissions and not using a CEMS</td>
<td>Conduct subsequent performance tests every 8,760 hours or 5 years, whichever comes first.</td>
</tr>
</tbody>
</table>
After you have demonstrated compliance for two consecutive tests, you may reduce the frequency of subsequent performance tests to annually. If the results of any subsequent annual performance test indicate the stationary RICE is not in compliance with the CO or formaldehyde emission limitation, or you deviate from any of your operating limitations, you must resume semiannual performance tests.

[78 FR 6711, Jan. 30, 2013]

Table 4 to Subpart ZZZZ of Part 63—Requirements for Performance Tests

As stated in §§63.6610, 63.6611, 63.6620, and 63.6640, you must comply with the following requirements for performance tests for stationary RICE:

<table>
<thead>
<tr>
<th>For each</th>
<th>Complying with the requirement to . . .</th>
<th>Using . . .</th>
<th>According to the following requirements . . .</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. 2SLB, 4SLB, and CI stationary RICE</td>
<td>a. reduce CO emissions</td>
<td>i. Select the sampling port location and the number/location of traverse points at the inlet and outlet of the control device; and</td>
<td>(a) For CO and O₂ measurement, ducts ≤6 inches in diameter may be sampled at a single point located at the duct centroid and ducts >6 and ≤12 inches in diameter may be sampled at 3 traverse points located at 16.7, 50.0, and 83.3% of the measurement line (‘3-point long line’). If the duct is >12 inches in diameter and the sampling port location meets the two and half-diameter criterion of Section 11.1.1 of Method 1 of 40 CFR part 60, appendix A-1, the duct may be sampled at ‘3-point long line’; otherwise, conduct the stratification testing and select sampling points according to Section 8.1.2 of Method 7E of 40 CFR part 60, appendix A-4.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ii. Measure the O₂ at the inlet and outlet of the control device; and</td>
<td>(b) Measurements to determine O₂ must be made at the same time as the measurements for CO concentration.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>iii. Measure the CO at the inlet and outlet of the control device</td>
<td>(c) The CO concentration must be at 15 percent O₂, dry basis.</td>
</tr>
<tr>
<td>2. 4SRB stationary RICE</td>
<td>a. reduce formaldehyde emissions</td>
<td>i. Select the sampling port location and the number/location of traverse points at the inlet and outlet of the control device; and</td>
<td>(a) Formaldehyde, O₂, and moisture measurement, ducts ≤6 inches in diameter may be sampled at a single point located at the duct centroid and ducts >6 and ≤12 inches in diameter may be sampled at 3 traverse points located at 16.7, 50.0, and 83.3% of the measurement line (‘3-point long line’). If the duct is >12 inches in diameter and the sampling port location meets the two and half-diameter criterion of Section 11.1.1 of Method 1 of 40 CFR part 60, appendix A, the duct may be sampled at ‘3-point long line’; otherwise, conduct the stratification testing and select sampling points according to Section 8.1.2 of Method 7E of 40 CFR part 60, appendix A.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ii. Measure O₂ at the inlet and outlet of the control device; and</td>
<td>(a) Measurements to determine O₂ concentration must be made at the same time as the measurements for formaldehyde or THC concentration.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>iii. Measure moisture content at the inlet and outlet of the control device</td>
<td>(a) Measurements to determine moisture content must be made at the same time and location as the measurements for formaldehyde or THC concentration.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>iv. If demonstrating compliance with the formaldehyde percent reduction requirement, measure formaldehyde at the inlet and the outlet of the control device</td>
<td>(a) Formaldehyde concentration must be at 15 percent O₂, dry basis. Results of this test consist of the average of the three 1-hour or longer runs.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>v. If demonstrating compliance with the THC percent reduction requirement, measure THC at the inlet and the outlet of the control device</td>
<td>(a) THC concentration must be at 15 percent O₂, dry basis. Results of this test consist of the average of the three 1-hour or longer runs.</td>
</tr>
</tbody>
</table>
Table 5 to Subpart ZZZZ of Part 63—Initial Compliance With Emission Limitations, Operating Limitations, and Other Requirements

As stated in §§63.6612, 63.6625 and 63.6630, you must initially comply with the emission and operating limitations as required by the following:

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Complying with the requirement to . . .</th>
<th>You have demonstrated initial compliance if . . .</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. New or reconstructed non-emergency 2SLB stationary RICE >500 HP located at a major source of HAP, new or reconstructed non-emergency 4SLB stationary RICE ≥250 HP located at a major source of HAP, non-emergency stationary CI RICE >500 HP located at a major source of HAP, and existing non-emergency stationary CI RICE >500 HP located at an area source of HAP</td>
<td>a. Reduce CO emissions and using oxidation catalyst, and using a CPMS</td>
<td>i. The average reduction of emissions of CO determined from the initial performance test achieves the required CO percent reduction; and ii. You have installed a CPMS to continuously monitor catalyst inlet temperature according to the requirements in §63.6625(b); and iii. You have recorded the catalyst pressure drop and catalyst inlet temperature during the initial performance test.</td>
</tr>
<tr>
<td>2. Non-emergency stationary CI RICE >500 HP located at a major source of HAP, and existing non-emergency stationary CI RICE >500 HP located at an area source of HAP</td>
<td>a. Limit the concentration of CO, using oxidation catalyst, and using a CPMS</td>
<td>i. The average CO concentration determined from the initial performance test is less than or equal to the CO emission limitation; and</td>
</tr>
<tr>
<td>3. New or reconstructed non-emergency 2SLB stationary RICE >500 HP located at a major source of HAP, new or reconstructed non-emergency</td>
<td>a. Reduce CO emissions and not</td>
<td>i. The average reduction of emissions of CO determined from the initial performance test achieves the required CO percent</td>
</tr>
</tbody>
</table>
4SLB stationary RICE >250 HP located at a major source of HAP, non-emergency stationary CI RICE >500 HP located at a major source of HAP, and existing non-emergency stationary CI RICE >500 HP located at an area source of HAP

- Using oxidation catalyst
- Reduction; and
- You have installed a CPMS to continuously monitor operating parameters approved by the Administrator (if any) according to the requirements in §63.6625(b); and
- You have recorded the approved operating parameters (if any) during the initial performance test.

4. Non-emergency stationary CI RICE >500 HP located at a major source of HAP, and existing non-emergency stationary CI RICE >500 HP located at an area source of HAP

- Limit the concentration of CO, and not using oxidation catalyst
- The average CO concentration determined from the initial performance test is less than or equal to the CO emission limitation; and
- You have installed a CPMS to continuously monitor operating parameters approved by the Administrator (if any) according to the requirements in §63.6625(b); and
- You have recorded the approved operating parameters (if any) during the initial performance test.

5. New or reconstructed non-emergency 2SLB stationary RICE >500 HP located at a major source of HAP, new or reconstructed non-emergency 4SLB stationary RICE >250 HP located at a major source of HAP, non-emergency stationary CI RICE >500 HP located at a major source of HAP, and existing non-emergency stationary CI RICE >500 HP located at an area source of HAP

- Reduce CO emissions, and using a CEMS
- The average reduction of CO calculated using §63.6620 equals or exceeds the required percent reduction. The initial test comprises the first 4-hour period after successful validation of the CEMS. Compliance is based on the average percent reduction achieved during the 4-hour period.

6. Non-emergency stationary CI RICE >500 HP located at a major source of HAP, and existing non-emergency stationary CI RICE >500 HP located at an area source of HAP

- Limit the concentration of CO, and using a CEMS
- You have installed a CEMS to continuously monitor CO and either O₂ or CO₂ at both the inlet and outlet of the oxidation catalyst according to the requirements in §63.6625(a); and
- You have conducted a performance evaluation of your CEMS using PS 3 and 4A of 40 CFR part 60, appendix B; and
- The average CO concentration calculated using §63.6620 is less than or equal to the CO emission limitation. The initial test comprises the first 4-hour period after successful validation of the CEMS. Compliance is based on the average concentration measured during the 4-hour period.

7. Non-emergency 4SRB stationary RICE >500 HP located at a major source of HAP

- Reduce formaldehyde emissions and using NSCR
- The average reduction of emissions of formaldehyde determined from the initial performance test is equal to or greater than the required formaldehyde percent reduction, or the average reduction of emissions of THC determined from the initial performance test is equal to or greater than 30 percent; and
- You have installed a CPMS to continuously monitor catalyst inlet temperature according to the requirements in §63.6625(b); and
- You have recorded the catalyst pressure drop and catalyst inlet temperature during the initial performance test.

8. Non-emergency 4SRB stationary RICE >500 HP located at a major source of HAP

- Reduce formaldehyde emissions and not using NSCR
- The average reduction of emissions of formaldehyde determined from the initial performance test is equal to or greater than the required formaldehyde percent reduction, or the average reduction of emissions of THC determined from the initial performance test is equal to or greater than 30 percent; and
- You have installed a CPMS to continuously monitor operating parameters approved by the Administrator (if any) according to the requirements in §63.6625(b); and
- You have recorded the approved operating parameters (if any) during the initial performance test.

9. New or reconstructed non-emergency stationary RICE >500 HP located at a major source of HAP, new or reconstructed non-emergency 4SLB stationary RICE 250<HP≤500 located at a major source of HAP, and existing non-emergency 4SRB stationary RICE >500 HP located at a major source of HAP

- Limit the concentration of formaldehyde in the stationary RICE exhaust and using oxidation catalyst or NSCR
- The average formaldehyde concentration, corrected to 15 percent O₂ dry basis, from the three test runs is less than or equal to the formaldehyde emission limitation; and
- You have installed a CPMS to continuously monitor catalyst inlet temperature according to the requirements in §63.6625(b); and
- You have recorded the catalyst pressure drop and catalyst inlet temperature during the initial performance test.

10. New or reconstructed non-emergency stationary RICE >500 HP located at a major source of HAP, new or reconstructed non-emergency 4SLB stationary RICE 250<HP≤500 located at a major source of HAP, and existing non-emergency 4SRB stationary RICE >500 HP located at a major source of HAP

- Limit the concentration of formaldehyde in the stationary RICE exhaust and not using oxidation catalyst or NSCR
- The average formaldehyde concentration, corrected to 15 percent O₂ dry basis, from the three test runs is less than or equal to the formaldehyde emission limitation; and
- You have installed a CPMS to continuously monitor operating parameters approved by the Administrator (if any) according to the requirements in §63.6625(b); and
- You have recorded the catalyst pressure drop and catalyst inlet temperature during the initial performance test.

11. Existing non-emergency stationary RICE 100<HP≤500 located at a major source of HAP, and existing non-emergency stationary CI RICE 300<HP≤500 located at an area source of HAP

- Reduce CO emissions
- The average reduction of emissions of CO or formaldehyde, as applicable determined from the initial performance test is equal to or greater than the required CO or formaldehyde, as applicable, percent reduction.

12. Existing non-emergency stationary RICE 100<HP≤500 located at a major source of HAP, and existing non-emergency stationary CI RICE 300<HP≤500 located at an area source of HAP

- Limit the concentration of formaldehyde or CO in...
13. Existing non-emergency 4SLB stationary RICE >500 HP located at an area source of HAP that are not remote stationary RICE and that are operated more than 24 hours per calendar year

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Install an oxidation catalyst</td>
<td>a. You have conducted an initial compliance demonstration as specified in §63.6630(e) to show that the average reduction of emissions of CO is 93 percent or more, or the average CO concentration is less than or equal to 47 ppmvd at 15 percent O₂;</td>
</tr>
<tr>
<td>Install equipment to automatically shut down the engine if the catalyst inlet temperature exceeds 1350 °F.</td>
<td>ii. You have installed a CPMS to continuously monitor catalyst inlet temperature according to the requirements in §63.6625(b), or you have installed equipment to automatically shut down the engine if the catalyst inlet temperature exceeds 1350 °F.</td>
</tr>
</tbody>
</table>

14. Existing non-emergency 4SRB stationary RICE >500 HP located at an area source of HAP that are not remote stationary RICE and that are operated more than 24 hours per calendar year

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Install NSCR</td>
<td>a. You have conducted an initial compliance demonstration as specified in §63.6630(e) to show that the average reduction of emissions of CO is 75 percent or more, the average CO concentration is less than or equal to 270 ppmvd at 15 percent O₂, or the average reduction of emissions of THC is 30 percent or more;</td>
</tr>
<tr>
<td>Install equipment to automatically shut down the engine if the catalyst inlet temperature exceeds 1250 °F.</td>
<td>ii. You have installed a CPMS to continuously monitor catalyst inlet temperature according to the requirements in §63.6625(b), or you have installed equipment to automatically shut down the engine if the catalyst inlet temperature exceeds 1250 °F.</td>
</tr>
</tbody>
</table>

[78 FR 6712, Jan. 30, 2013]

† Back to Top

Table 6 to Subpart ZZZZ of Part 63—Continuous Compliance With Emission Limitations, and Other Requirements

As stated in §63.6640, you must continuously comply with the emissions and operating limitations and work or management practices as required by the following:

<table>
<thead>
<tr>
<th>For each . . .</th>
<th>Complying with the requirement to . . .</th>
<th>You must demonstrate continuous compliance by . . .</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. New or reconstructed non-emergency 2SLB stationary RICE >500 HP located at a major source of HAP, new or reconstructed non-emergency 4SLB stationary RICE ≥250 HP located at a major source of HAP, and new or reconstructed non-emergency CI stationary RICE >500 HP located at a major source of HAP</td>
<td>a. Reduce CO emissions and using an oxidation catalyst, and using a CPMS</td>
<td>i. Conducting semiannual performance tests for CO to demonstrate that the required CO percent reduction is achieved; and</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ii. Collecting the catalyst inlet temperature data according to §63.6625(b); and</td>
</tr>
<tr>
<td></td>
<td></td>
<td>iii. Reducing these data to 4-hour rolling averages; and</td>
</tr>
<tr>
<td></td>
<td></td>
<td>iv. Maintaining the 4-hour rolling averages within the operating limitations for the catalyst inlet temperature; and</td>
</tr>
<tr>
<td></td>
<td></td>
<td>v. Measuring the pressure drop across the catalyst once per month and demonstrating that the pressure drop across the catalyst is within the operating limitation established during the performance test.</td>
</tr>
<tr>
<td>2. New or reconstructed non-emergency 2SLB stationary RICE >500 HP located at a major source of HAP, new or reconstructed non-emergency 4SLB stationary RICE ≥250 HP located at a major source of HAP, and new or reconstructed non-emergency CI stationary RICE >500 HP located at a major source of HAP</td>
<td>a. Reduce CO emissions and not using an oxidation catalyst, and using a CPMS</td>
<td>i. Conducting semiannual performance tests for CO to demonstrate that the required CO percent reduction is achieved; and</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ii. Collecting the approved operating parameter (if any) data according to §63.6625(b); and</td>
</tr>
<tr>
<td></td>
<td></td>
<td>iii. Reducing these data to 4-hour rolling averages; and</td>
</tr>
<tr>
<td></td>
<td></td>
<td>iv. Maintaining the 4-hour rolling averages within the operating limitations for the operating parameters established during the performance test.</td>
</tr>
<tr>
<td>3. New or reconstructed non-emergency 2SLB stationary RICE >500 HP located at a major source of HAP, new or reconstructed non-emergency 4SLB stationary RICE ≥250 HP located at a major source of HAP, new or reconstructed non-emergency stationary CI RICE >500 HP located at a major source of HAP, and existing non-emergency stationary CI RICE >500 HP</td>
<td>a. Reduce CO emissions or limit the concentration of CO in the stationary RICE exhaust, and using a CEMS</td>
<td>i. Collecting the monitoring data according to §63.6625(a), reducing the measurements to 1-hour averages, calculating the percent reduction or concentration of CO emissions according to §63.6620; and</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ii. Demonstrating that the catalyst achieves the required percent reduction of CO emissions over the 4-hour averaging period, or</td>
</tr>
</tbody>
</table>
4. Non-emergency 4SRB stationary RICE >500 HP located at a major source of HAP

<table>
<thead>
<tr>
<th>a. Reduce formaldehyde emissions and using NSCR</th>
</tr>
</thead>
</table>

- i. Collecting the catalyst inlet temperature data according to §63.6625(b); and
- ii. Reducing these data to 4-hour rolling averages; and
- iii. Maintaining the 4-hour rolling averages within the operating limitations for the catalyst inlet temperature; and
- iv. Measuring the pressure drop across the catalyst once per month and demonstrating that the pressure drop across the catalyst is within the operating limitation established during the performance test.

5. Non-emergency 4SRB stationary RICE >500 HP located at a major source of HAP

<table>
<thead>
<tr>
<th>a. Reduce formaldehyde emissions and not using NSCR</th>
</tr>
</thead>
</table>

- i. Collecting the approved operating parameter (if any) data according to §63.6625(b); and
- ii. Reducing these data to 4-hour rolling averages; and
- iii. Maintaining the 4-hour rolling averages within the operating limitations for the operating parameters established during the performance test.

6. Non-emergency 4SRB stationary RICE with a brake HP ≥5,000 located at a major source of HAP

| Conducting semiannual performance tests for formaldehyde to demonstrate that the required formaldehyde percent reduction is achieved, or to demonstrate that the average reduction of emissions of THC determined from the performance test is equal to or greater than 30 percent. |

7. New or reconstructed non-emergency stationary RICE >500 HP located at a major source of HAP and new or reconstructed non-emergency 4SLB stationary RICE 250≤HP≤500 located at a major source of HAP

<table>
<thead>
<tr>
<th>a. Limit the concentration of formaldehyde in the stationary RICE exhaust and using oxidation catalyst or NSCR</th>
</tr>
</thead>
</table>

- i. Conducting semiannual performance tests for formaldehyde to demonstrate that your emissions remain at or below the formaldehyde concentration limit; and
- ii. Collecting the catalyst inlet temperature data according to §63.6625(b); and
- iii. Reducing these data to 4-hour rolling averages; and
- iv. Maintaining the 4-hour rolling averages within the operating limitations for the catalyst inlet temperature; and
- v. Measuring the pressure drop across the catalyst once per month and demonstrating that the pressure drop across the catalyst is within the operating limitation established during the performance test.

8. New or reconstructed non-emergency stationary RICE >500 HP located at a major source of HAP and new or reconstructed non-emergency 4SLB stationary RICE 250≤HP≤500 located at a major source of HAP

<table>
<thead>
<tr>
<th>a. Limit the concentration of formaldehyde in the stationary RICE exhaust and not using NSCR</th>
</tr>
</thead>
</table>

- i. Conducting semiannual performance tests for formaldehyde to demonstrate that your emissions remain at or below the formaldehyde concentration limit; and
- ii. Collecting the approved operating parameter (if any) data according to §63.6625(b); and
9. Existing emergency and black start stationary RICE ≤500 HP located at a major source of HAP, existing non-emergency stationary RICE ≤500 HP located at a major source of HAP, existing emergency and black start stationary RICE located at an area source of HAP, existing non-emergency stationary 2SLB stationary RICE located at an area source of HAP, existing non-emergency stationary S1 RICE located at an area source of HAP which combusts landfill or digester gas equivalent to 10 percent or more of the gross heat input on an annual basis, existing non-emergency 4SLB and 4SRB stationary RICE ≤500 HP located at an area source of HAP, existing non-emergency 4SLB and 4SRB stationary RICE >500 HP located at an area source of HAP that are remote stationary RICE

a. Work or Management practices

i. Operating and maintaining the stationary RICE according to the manufacturer's emission-related operation and maintenance instructions; or

ii. Develop and follow your own maintenance plan which must provide to the extent practicable for the maintenance and operation of the engine in a manner consistent with good air pollution control practice for minimizing emissions.

10. Existing stationary CI RICE >500 HP that are not limited use stationary RICE

a. Reduce CO emissions, or limit the concentration of CO in the stationary RICE exhaust, and using oxidation catalyst

i. Conduction performance tests every 8,760 hours or 3 years, whichever comes first, for CO or formaldehyde, as appropriate, to demonstrate that the required CO or formaldehyde, as appropriate, percent reduction is achieved or that your emissions remain at or below the CO or formaldehyde concentration limit; and

ii. Collecting the catalyst inlet temperature data according to §63.6625(b); and

iii. Reducing these data to 4-hour rolling averages; and

iv. Maintaining the 4-hour rolling averages within the operating limitations for the catalyst inlet temperature; and

v. Measuring the pressure drop across the catalyst once per month and demonstrating that the pressure drop across the catalyst is within the operating limitation established during the performance test.

11. Existing stationary CI RICE >500 HP that are not limited use stationary RICE

a. Reduce CO emissions, or limit the concentration of CO in the stationary RICE exhaust, and not using oxidation catalyst

i. Conducting performance tests every 8,760 hours or 3 years, whichever comes first, for CO or formaldehyde, as appropriate, to demonstrate that the required CO or formaldehyde, as appropriate, percent reduction is achieved or that your emissions remain at or below the CO or formaldehyde concentration limit; and

ii. Collecting the approved operating parameter (if any) data according to §63.6625(b); and

iii. Reducing these data to 4-hour rolling averages; and

iv. Maintaining the 4-hour rolling averages within the operating limitations for the operating parameters established during the performance test.

12. Existing limited use CI stationary RICE >500 HP

a. Reduce CO emissions or limit the concentration of CO in the stationary RICE exhaust, and using an oxidation catalyst

i. Conducting performance tests every 8,760 hours or 5 years, whichever comes first, for CO or formaldehyde, as appropriate, to demonstrate that the required CO or formaldehyde, as appropriate, percent reduction is achieved or that your emissions remain at or below the CO or formaldehyde concentration limit; and
ii. Collecting the catalyst inlet temperature data according to §63.6625(b); and

iii. Reducing these data to 4-hour rolling averages; and

iv. Maintaining the 4-hour rolling averages within the operating limitations for the catalyst inlet temperature; and

v. Measuring the pressure drop across the catalyst once per month and demonstrating that the pressure drop across the catalyst is within the operating limitation established during the performance test.

13. Existing limited use CI stationary RICE >500 HP

a. Reduce CO emissions or limit the concentration of CO in the stationary RICE exhaust, and not using an oxidation catalyst

i. Conducting performance tests every 8,760 hours or 5 years, whichever comes first, for CO or formaldehyde, as appropriate, to demonstrate that the required CO or formaldehyde, as appropriate, percent reduction is achieved or that your emissions remain at or below the CO or formaldehyde concentration limit; and

ii. Collecting the approved operating parameter (if any) data according to §63.6625(b); and

iii. Reducing these data to 4-hour rolling averages; and

iv. Maintaining the 4-hour rolling averages within the operating limitations for the operating parameters established during the performance test.

14. Existing non-emergency 4SLB stationary RICE >500 HP located at an area source of HAP that are not remote stationary RICE and that are operated more than 24 hours per calendar year

a. Install an NSCR

i. Conducting annual compliance demonstrations as specified in §63.6640(c) to show that the average reduction of emissions of CO is 75 percent or more, the average CO concentration is less than or equal to 270 ppmvvd at 15 percent O₂, or the average reduction of emissions of THC is 30 percent or more; and either

ii. Collecting the catalyst inlet temperature data according to §63.6625(b), reducing these data to 4-hour rolling averages; and maintaining the 4-hour rolling averages within the limitation of greater than 750 °F and less than or equal to 1250 °F for the catalyst inlet temperature; or

iii. Immediately shutting down the engine if the catalyst inlet temperature exceeds 1250 °F.

15. Existing non-emergency 4SRB stationary RICE >500 HP located at an area source of HAP that are not remote stationary RICE and that are operated more than 24 hours per calendar year

a. Install an oxidation catalyst

i. Conducting annual compliance demonstrations as specified in §63.6640(c) to show that the average reduction of emissions of CO is 93 percent or more, or the average CO concentration is less than or equal to 47 ppmvvd at 15 percent O₂; and either

ii. Collecting the catalyst inlet temperature data according to §63.6625(b), reducing these data to 4-hour rolling averages; and maintaining the 4-hour rolling averages within the limitation of greater than 450 °F and less than or equal to 1350 °F for the catalyst inlet temperature; or

iii. Immediately shutting down the engine if the catalyst inlet temperature exceeds 1350 °F.

After you have demonstrated compliance for two consecutive tests, you may reduce the frequency of subsequent performance tests to annually. If the results of any subsequent annual performance test indicate the stationary RICE is not in
compliance with the CO or formaldehyde emission limitation, or you deviate from any of your operating limitations, you must resume semiannual performance tests.

[78 FR 6715, Jan. 30, 2013]

Table 7 to Subpart ZZZZ of Part 63—Requirements for Reports

As stated in §63.6650, you must comply with the following requirements for reports:

<table>
<thead>
<tr>
<th>For each . . .</th>
<th>You must submit a . . .</th>
<th>The report must contain . . .</th>
<th>You must submit the report . . .</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Existing non-emergency, non-black start stationary RICE 100≤HP≤500 located at a major source of HAP; existing non-emergency, non-black start stationary CI RICE >500 HP located at a major source of HAP; existing non-emergency, non-black start stationary CI RICE >300 HP located at an area source of HAP; new or reconstructed non-emergency stationary RICE >500 HP located at a major source of HAP; and new or reconstructed non-emergency 4SRB stationary RICE 250≤HP≤500 located at a major source of HAP</td>
<td>Compliance report</td>
<td>i. If there are no deviations from any emission limitations or operating limitations that apply to you, a statement that there were no deviations from the emission limitations or operating limitations during the reporting period. If there were no periods during which the CMS, including CEMS and CPMS, was out-of-control, as specified in §63.8(c)(7), a statement that there were not periods during which the CMS was out-of-control during the reporting period; or</td>
<td>i. Semiannually according to the requirements in §63.6650(b)(1)-(5) for engines that are not limited use stationary RICE subject to numerical emission limitations; and ii. Annually according to the requirements in §63.6650(b)(6)-(9) for engines that are limited use stationary RICE subject to numerical emission limitations.</td>
</tr>
<tr>
<td>2. New or reconstructed non-emergency stationary RICE that combusts landfill gas or digester gas equivalent to 10 percent or more of the gross heat input on an annual basis</td>
<td>Report</td>
<td>a. The fuel flow rate of each fuel and the heating values that were used in your calculations, and you must demonstrate that the percentage of heat input provided by landfill gas or digester gas, is equivalent to 10 percent or more of the gross heat input on an annual basis; and</td>
<td>i. See item 2.a.i.</td>
</tr>
<tr>
<td>3. Existing non-emergency, non-black start 4SLB and 4SRB stationary RICE >500 HP located at an area source of HAP that are not remote stationary RICE and that operate more than 24 hours per calendar year</td>
<td>Compliance report</td>
<td>a. The results of the annual compliance demonstration, if conducted during the reporting period.</td>
<td>i. Semiannually according to the requirements in §63.6650(b)(1)-(5).</td>
</tr>
<tr>
<td>4. Emergency stationary RICE that operate or are contractually obligated to be available for more than 15 hours per year for the purposes specified in §63.6640(f)(2)(ii) and (iii) or that operate for the purposes specified in §63.6640(f)(4)(ii)</td>
<td>Report</td>
<td>a. The information in §63.6650(h)(1)</td>
<td>i. Annually according to the requirements in §63.6650(h)(2)-(3).</td>
</tr>
</tbody>
</table>

[78 FR 6719, Jan. 30, 2013]

Table 8 to Subpart ZZZZ of Part 63—Applicability of General Provisions to Subpart ZZZZ.

As stated in §63.6665, you must comply with the following applicable general provisions.

<table>
<thead>
<tr>
<th>General provisions citation</th>
<th>Subject of citation</th>
<th>Applies to subpart</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>§63.1</td>
<td>General applicability of the General</td>
<td>Yes.</td>
<td></td>
</tr>
<tr>
<td>Provisions</td>
<td>Yes/No</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>--------</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>§63.2 Definitions</td>
<td>Yes</td>
<td>Additional terms defined in §63.6675.</td>
<td></td>
</tr>
<tr>
<td>§63.3 Units and abbreviations</td>
<td>Yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>§63.4 Prohibited activities and circumvention</td>
<td>Yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>§63.5 Construction and reconstruction</td>
<td>Yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>§63.6(a) Applicability</td>
<td>Yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>§63.6(b)(1)-(4) Compliance dates for new and reconstructed sources</td>
<td>Yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>§63.6(b)(5) Notification</td>
<td>Yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>§63.6(b)(6) [Reserved]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>§63.6(b)(7) Compliance dates for new and reconstructed area sources that</td>
<td>Yes</td>
<td>become major sources</td>
<td></td>
</tr>
<tr>
<td>become major sources</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>§63.6(c)(1)-(2) Compliance dates for existing sources</td>
<td>Yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>§63.6(c)(3)-(4) [Reserved]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>§63.6(c)(5) Compliance dates for existing area sources that become</td>
<td>Yes</td>
<td>major sources</td>
<td></td>
</tr>
<tr>
<td>major sources</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>§63.6(d) [Reserved]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>§63.6(e) Operation and maintenance</td>
<td>No</td>
<td>Subpart ZZZZ does not contain opacity or visible emission standards.</td>
<td></td>
</tr>
<tr>
<td>§63.6(f)(1) Applicability of standards</td>
<td>No</td>
<td>Subpart ZZZZ does not contain opacity or visible emission standards.</td>
<td></td>
</tr>
<tr>
<td>§63.6(f)(2) Methods for determining compliance</td>
<td>Yes</td>
<td>Subpart ZZZZ does not contain opacity or visible emission standards.</td>
<td></td>
</tr>
<tr>
<td>§63.6(f)(3) Finding of compliance</td>
<td>Yes</td>
<td>Subpart ZZZZ does not contain opacity or visible emission standards.</td>
<td></td>
</tr>
<tr>
<td>§63.6(g)(1)-(3) Use of alternate standard</td>
<td>Yes</td>
<td>Subpart ZZZZ does not contain opacity or visible emission standards.</td>
<td></td>
</tr>
<tr>
<td>§63.6(h) Opacity and visible emission standards</td>
<td>No</td>
<td>Subpart ZZZZ does not contain opacity or visible emission standards.</td>
<td></td>
</tr>
<tr>
<td>§63.6(i) Compliance extension procedures and criteria</td>
<td>Yes</td>
<td>Subpart ZZZZ does not contain opacity or visible emission standards.</td>
<td></td>
</tr>
<tr>
<td>§63.6(j) Presidential compliance exemption</td>
<td>Yes</td>
<td>Subpart ZZZZ does not contain opacity or visible emission standards.</td>
<td></td>
</tr>
<tr>
<td>§63.7(a)(1)-(2) Performance test dates</td>
<td>Yes</td>
<td>Subpart ZZZZ contains performance test dates at §§63.6610, 63.6611, and 63.6612.</td>
<td></td>
</tr>
<tr>
<td>§63.7(a)(3) CAA section 114 authority</td>
<td>Yes</td>
<td>Subpart ZZZZ contains performance test dates at §§63.6610, 63.6611, and 63.6612.</td>
<td></td>
</tr>
<tr>
<td>§63.7(b)(1) Notification of performance test</td>
<td>Yes</td>
<td>Except that §63.7(b)(1) only applies as specified in §63.6645.</td>
<td></td>
</tr>
<tr>
<td>§63.7(b)(2) Notification of rescheduling</td>
<td>Yes</td>
<td>Except that §63.7(b)(2) only applies as specified in §63.6645.</td>
<td></td>
</tr>
<tr>
<td>§63.7(c) Quality assurance/test plan</td>
<td>Yes</td>
<td>Except that §63.7(c) only applies as specified in §63.6645.</td>
<td></td>
</tr>
<tr>
<td>§63.7(d) Testing facilities</td>
<td>Yes</td>
<td>Subpart ZZZZ contains performance test dates at §§63.6610, 63.6611, and 63.6612.</td>
<td></td>
</tr>
<tr>
<td>§63.7(e)(1) Conditions for conducting performance tests</td>
<td>No</td>
<td>Subpart ZZZZ contains performance test dates at §§63.6610, 63.6611, and 63.6612.</td>
<td></td>
</tr>
<tr>
<td>§63.7(e)(2) Conduct of performance tests and reduction of data</td>
<td>Yes</td>
<td>Subpart ZZZZ contains performance test dates at §§63.6610, 63.6611, and 63.6612.</td>
<td></td>
</tr>
<tr>
<td>§63.7(e)(3) Test run duration</td>
<td>Yes</td>
<td>Subpart ZZZZ contains performance test dates at §§63.6610, 63.6611, and 63.6612.</td>
<td></td>
</tr>
<tr>
<td>§63.7(e)(4) Administrator may require other testing under section 114 of</td>
<td>Yes</td>
<td>Subpart ZZZZ contains performance test dates at §§63.6610, 63.6611, and 63.6612.</td>
<td></td>
</tr>
<tr>
<td>the CAA</td>
<td></td>
<td>Subpart ZZZZ contains performance test dates at §§63.6610, 63.6611, and 63.6612.</td>
<td></td>
</tr>
<tr>
<td>§63.7(f) Alternative test method provisions</td>
<td>Yes</td>
<td>Subpart ZZZZ contains performance test dates at §§63.6610, 63.6611, and 63.6612.</td>
<td></td>
</tr>
<tr>
<td>§63.7(g) Performance test data analysis, recordkeeping, and reporting</td>
<td>Yes</td>
<td>Subpart ZZZZ contains performance test dates at §§63.6610, 63.6611, and 63.6612.</td>
<td></td>
</tr>
<tr>
<td>§63.7(h) Waiver of tests</td>
<td>Yes</td>
<td>Subpart ZZZZ contains performance test dates at §§63.6610, 63.6611, and 63.6612.</td>
<td></td>
</tr>
<tr>
<td>§63.8(a)(1) Applicability of monitoring requirements</td>
<td>Yes</td>
<td>Subpart ZZZZ contains specific requirements for monitoring at §63.6625.</td>
<td></td>
</tr>
<tr>
<td>§63.8(a)(2) Performance specifications</td>
<td>Yes</td>
<td>Subpart ZZZZ contains specific requirements for monitoring at §63.6625.</td>
<td></td>
</tr>
<tr>
<td>§63.8(a)(3) [Reserved]</td>
<td></td>
<td>Subpart ZZZZ contains specific requirements for monitoring at §63.6625.</td>
<td></td>
</tr>
<tr>
<td>§63.8(a)(4) Monitoring for control devices</td>
<td>No</td>
<td>Subpart ZZZZ contains specific requirements for monitoring at §63.6625.</td>
<td></td>
</tr>
<tr>
<td>§63.8(b)(1) Monitoring</td>
<td>Yes</td>
<td>Subpart ZZZZ contains specific requirements for monitoring at §63.6625.</td>
<td></td>
</tr>
<tr>
<td>§63.8(b)(2)-(3) Multiple effluents and multiple monitoring systems</td>
<td>Yes</td>
<td>Subpart ZZZZ contains specific requirements for monitoring at §63.6625.</td>
<td></td>
</tr>
<tr>
<td>§63.8(c)(1) Monitoring system operation and maintenance</td>
<td>Yes</td>
<td>Subpart ZZZZ contains specific requirements for monitoring at §63.6625.</td>
<td></td>
</tr>
<tr>
<td>§63.8(c)(1)(i) Routine and predictable SSM</td>
<td>No</td>
<td>Subpart ZZZZ contains performance test dates at §§63.6610, 63.6611, and 63.6612.</td>
<td></td>
</tr>
<tr>
<td>§63.8(c)(1)(ii) SSM not in Startup Shutdown Malfunction Plan</td>
<td>Yes</td>
<td>Subpart ZZZZ contains performance test dates at §§63.6610, 63.6611, and 63.6612.</td>
<td></td>
</tr>
<tr>
<td>§63.8(c)(1)(iii) Compliance with operation and maintenance requirements</td>
<td>No</td>
<td>Subpart ZZZZ contains performance test dates at §§63.6610, 63.6611, and 63.6612.</td>
<td></td>
</tr>
<tr>
<td>§63.8(c)(2)-(3) Monitoring system installation</td>
<td>Yes</td>
<td>Subpart ZZZZ contains performance test dates at §§63.6610, 63.6611, and 63.6612.</td>
<td></td>
</tr>
<tr>
<td>§63.8(c)(4) Continuous monitoring system (CMS) requirements</td>
<td>Yes</td>
<td>Subpart ZZZZ contains performance test dates at §§63.6610, 63.6611, and 63.6612.</td>
<td></td>
</tr>
<tr>
<td>§63.8(c)(5) COMS minimum procedures</td>
<td>No</td>
<td>Subpart ZZZZ contains performance test dates at §§63.6610, 63.6611, and 63.6612.</td>
<td></td>
</tr>
<tr>
<td>§63.8(c)(6)-(8) CMS requirements</td>
<td>Yes</td>
<td>Subpart ZZZZ contains performance test dates at §§63.6610, 63.6611, and 63.6612.</td>
<td></td>
</tr>
<tr>
<td>§63.8(d) CMS quality control</td>
<td>Yes</td>
<td>Subpart ZZZZ contains performance test dates at §§63.6610, 63.6611, and 63.6612.</td>
<td></td>
</tr>
<tr>
<td>§63.8(e) CMS performance evaluation</td>
<td>Yes</td>
<td>Subpart ZZZZ contains performance test dates at §§63.6610, 63.6611, and 63.6612.</td>
<td></td>
</tr>
<tr>
<td>§63.8(f)(1)-(5) Alternative monitoring method</td>
<td>Yes</td>
<td>Subpart ZZZZ contains performance test dates at §§63.6610, 63.6611, and 63.6612.</td>
<td></td>
</tr>
<tr>
<td>§63.8(f)(6) Alternative to relative accuracy test</td>
<td>Yes</td>
<td>Subpart ZZZZ contains performance test dates at §§63.6610, 63.6611, and 63.6612.</td>
<td></td>
</tr>
<tr>
<td>§63.8(g) Data reduction</td>
<td>Yes</td>
<td>Subpart ZZZZ contains performance test dates at §§63.6610, 63.6611, and 63.6612.</td>
<td></td>
</tr>
<tr>
<td>§63.9(a) Applicability and State delegation of notification requirements</td>
<td>Yes</td>
<td>Subpart ZZZZ contains performance test dates at §§63.6610, 63.6611, and 63.6612.</td>
<td></td>
</tr>
<tr>
<td>§63.9(b)(1)-5 Initial notifications</td>
<td>Yes</td>
<td>Subpart ZZZZ contains performance test dates at §§63.6610, 63.6611, and 63.6612.</td>
<td></td>
</tr>
</tbody>
</table>
Appendix A to Subpart ZZZZ of Part 63—Protocol for Using an Electrochemical Analyzer to Determine Oxygen and Carbon Monoxide Concentrations From Certain Engines

1.0 Scope and Application. What is this Protocol?

This protocol is a procedure for using portable electrochemical (EC) cells for measuring carbon monoxide (CO) and oxygen (O\textsubscript{2}) concentrations in controlled and uncontrolled emissions from existing stationary 4-stroke lean burn and 4-stroke rich burn reciprocating internal combustion engines as specified in the applicable rule.

1.1 Analytes. What does this protocol determine?

This protocol measures the engine exhaust gas concentrations of carbon monoxide (CO) and oxygen (O\textsubscript{2}).

<table>
<thead>
<tr>
<th>Analyte</th>
<th>CAS No.</th>
<th>Sensitivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbon monoxide (CO)</td>
<td>630-08-0</td>
<td>Minimum detectable limit should be 2 percent of the nominal range or 1 ppm, whichever is less restrictive.</td>
</tr>
</tbody>
</table>

1.2 Applicability. When is this protocol acceptable?

This protocol is applicable to 40 CFR part 63, subpart ZZZZ. Because of inherent cross sensitivities of EC cells, you must not apply this protocol to other emissions sources without specific instruction to that effect.

1.3 Data Quality Objectives. How good must my collected data be?

Refer to Section 13 to verify and document acceptable analyzer performance.

1.4 Range. What is the targeted analytical range for this protocol?

The measurement system and EC cell design(s) conforming to this protocol will determine the analytical range for each gas component. The nominal ranges are defined by choosing up-scale calibration gas concentrations near the maximum anticipated flue gas concentrations for CO and O\textsubscript{2}, or no more than twice the permitted CO level.

1.5 Sensitivity. What minimum detectable limit will this protocol yield for a particular gas component?

The minimum detectable limit depends on the nominal range and resolution of the specific EC cell used, and the signal to noise ratio of the measurement system. The minimum detectable limit should be 2 percent of the nominal range or 1 ppm, whichever is less restrictive.

2.0 Summary of Protocol

In this protocol, a gas sample is extracted from an engine exhaust system and then conveyed to a portable EC analyzer for measurement of CO and O\textsubscript{2} gas concentrations. This method provides measurement system performance specifications and sampling protocols to ensure reliable data. You may use additions to, or modifications of vendor supplied measurement systems (e.g., heated or unheated sample lines, thermocouples, flow meters, selective gas scrubbers, etc.) to meet the design specifications of this protocol. Do not make changes to the measurement system from the as-verified configuration (Section 3.12).

3.0 Definitions

3.1 Measurement System. The total equipment required for the measurement of CO and O\textsubscript{2} concentrations. The measurement system consists of the following major subsystems:

3.1.1 Data Recorder. A strip chart recorder, computer or digital recorder for logging measurement data from the analyzer output. You may record measurement data from the digital data display manually or electronically.

3.1.2 Electrochemical (EC) Cell. A device, similar to a fuel cell, used to sense the presence of a specific analyte and generate an electrical current output proportional to the analyte concentration.

3.1.3 Interference Gas Scrubber. A device used to remove or neutralize chemical compounds that may interfere with the selective operation of an EC cell.

3.1.4 Moisture Removal System. Any device used to reduce the concentration of moisture in the sample stream so as to protect the EC cells from the damaging effects of condensation and to minimize errors in measurements caused by the scrubbing of soluble gases.

3.1.5 Sample Interface. The portion of the system used for one or more of the following: sample acquisition; sample transport; sample conditioning or protection of the EC cell from any degrading effects of the engine exhaust effluent; removal of particulate matter and condensed moisture.

3.2 Nominal Range. The range of analyte concentrations over which each EC cell is operated (normally 25 percent to 150 percent of up-scale calibration gas value). Several nominal ranges can be used for any given cell so long as the calibration and repeatability checks for that range remain within specifications.

3.3 Calibration Gas. A vendor certified concentration of a specific analyte in an appropriate balance gas.

3.4 Zero Calibration Error. The analyte concentration output exhibited by the EC cell in response to zero-level calibration gas.

3.5 Up-Scale Calibration Error. The mean of the difference between the analyte concentration exhibited by the EC cell and the certified concentration of the up-scale calibration gas.
3.6 Interference Check. A procedure for quantifying analytical interference from components in the engine exhaust gas other than the targeted analytes.

3.7 Repeatability Check. A protocol for demonstrating that an EC cell operated over a given nominal analyte concentration range provides a stable and consistent response and is not significantly affected by repeated exposure to that gas.

3.8 Sample Flow Rate. The flow rate of the gas sample as it passes through the EC cell. In some situations, EC cells can experience drift with changes in flow rate. The flow rate must be monitored and documented during all phases of a sampling run.

3.9 Sampling Run. A timed three-phase event whereby an EC cell's response rises and plateaus in a sample conditioning phase, remains relatively constant during a measurement data phase, then declines during a refresh phase. The sample conditioning phase exposes the EC cell to the gas sample for a length of time sufficient to reach a constant response. The measurement data phase is the time interval during which gas sample measurements can be made that meet the acceptance criteria of this protocol. The refresh phase then purges the EC cells with CO-free air. The refresh phase replenishes requisite O\(_2\) and moisture in the electrolyte reserve and provides a mechanism to de-gas or desorb any interference gas scrubbers or filters so as to enable a stable CO EC cell response. There are four primary types of sampling runs: pre-sampling calibrations; stack gas sampling; post-sampling calibration checks; and measurement system repeatability checks. Stack gas sampling runs can be chained together for extended evaluations, providing all other procedural specifications are met.

3.10 Sampling Day. A time not to exceed twelve hours from the time of the pre-sampling calibration to the post-sampling calibration check. During this time, stack gas sampling runs can be repeated without repeated recalibrations, providing all other sampling specifications have been met.

3.11 Pre-Sampling Calibration/Post-Sampling Calibration Check. The protocols executed at the beginning and end of each sampling day to bracket measurement readings with controlled performance checks.

3.12 Performance-Established Configuration. The EC cell and sampling system configuration that existed at the time that it initially met the performance requirements of this protocol.

4.0 Interferences.

When present in sufficient concentrations, NO and NO\(_2\) are two gas species that have been reported to interfere with CO concentration measurements. In the likelihood of this occurrence, it is the protocol user's responsibility to employ and properly maintain an appropriate CO EC cell filter or scrubber for removal of these gases, as described in Section 6.2.12.

5.0 SAFETY. [RESERVED]

6.0 Equipment and Supplies.

6.1 What equipment do I need for the measurement system?

The system must maintain the gas sample at conditions that will prevent moisture condensation in the sample transport lines, both before and as the sample gas contacts the EC cells. The essential components of the measurement system are described below.

6.2 Measurement System Components.

6.2.1 Sample Probe. A single extraction-point probe constructed of glass, stainless steel or other non-reactive material, and of length sufficient to reach any designated sampling point. The sample probe must be designed to prevent plugging due to condensation or particulate matter.

6.2.2 Sample Line. Non-reactive tubing to transport the effluent from the sample probe to the EC cell.

6.2.3 Calibration Assembly (optional). A three-way valve assembly or equivalent to introduce calibration gases at ambient pressure at the exit end of the sample probe during calibration checks. The assembly must be designed such that only stack gas or calibration gas flows in the sample line and all gases flow through any gas path filters.

6.2.4 Particulate Filter (optional). Filters before the inlet of the EC cell to prevent accumulation of particulate material in the measurement system and extend the useful life of the components. All filters must be fabricated of materials that are non-reactive to the gas mixtures being sampled.

6.2.5 Sample Pump. A leak-free pump to provide undiluted sample gas to the system at a flow rate sufficient to minimize the response time of the measurement system. If located upstream of the EC cells, the pump must be constructed of a material that is non-reactive to the gas mixtures being sampled.
6.2.8 Sample Flow Rate Monitoring. An adjustable rotameter or equivalent device used to adjust and maintain the sample flow rate through the analyzer as prescribed.

6.2.9 Sample Gas Manifold (optional). A manifold to divert a portion of the sample gas stream to the analyzer and the remainder to a by-pass discharge vent. The sample gas manifold may also include provisions for introducing calibration gases directly to the analyzer. The manifold must be constructed of a material that is non-reactive to the gas mixtures being sampled.

6.2.10 EC cell. A device containing one or more EC cells to determine the CO and O\textsubscript{2} concentrations in the sample gas stream. The EC cell(s) must meet the applicable performance specifications of Section 13 of this protocol.

6.2.11 Data Recorder. A strip chart recorder, computer or digital recorder to make a record of analyzer output data. The data recorder resolution (i.e., readability) must be no greater than 1 ppm for CO; 0.1 percent for O\textsubscript{2}; and one degree (either °C or °F) for temperature. Alternatively, you may use a digital or analog meter having the same resolution to observe and manually record the analyzer responses.

6.2.12 Interference Gas Filter or Scrubber. A device to remove interfering compounds upstream of the CO EC cell. Specific interference gas filters or scrubbers used in the performance-established configuration of the analyzer must continue to be used. Such a filter or scrubber must have a means to determine when the removal agent is exhausted. Periodically replace or replenish it in accordance with the manufacturer's recommendations.

7.0 Reagents and Standards. What Calibration Gases Are Needed?

7.1 Calibration Gases. CO calibration gases for the EC cell must be CO in nitrogen or CO in a mixture of nitrogen and O\textsubscript{2}. Use CO calibration gases with labeled concentration values certified by the manufacturer to be within ±5 percent of the label value. Dry ambient air (20.9 percent O\textsubscript{2}) is acceptable for calibration of the O\textsubscript{2} cell. If needed, any lower percentage O\textsubscript{2} calibration gas must be a mixture of O\textsubscript{2} in nitrogen.

7.1.1 Up-Scale CO Calibration Gas Concentration. Choose one or more up-scale gas concentrations such that the average of the stack gas measurements for each stack gas sampling run are between 25 and 150 percent of those concentrations. Alternatively, choose an up-scale gas that does not exceed twice the concentration of the applicable outlet standard. If a measured gas value exceeds 150 percent of the up-scale CO calibration gas value at any time during the stack gas sampling run, the run must be discarded and repeated.

7.1.2 Up-Scale O\textsubscript{2} Calibration Gas Concentration.

Select an O\textsubscript{2} gas concentration such that the difference between the gas concentration and the average stack gas measurement or reading for each sample run is less than 15 percent O\textsubscript{2}. When the average exhaust gas O\textsubscript{2} readings are above 6 percent, you may use dry ambient air (20.9 percent O\textsubscript{2}) for the up-scale O\textsubscript{2} calibration gas.

7.1.3 Zero Gas. Use an inert gas that contains less than 0.25 percent of the up-scale CO calibration gas concentration. You may use dry air that is free from ambient CO and other combustion gas products (e.g., CO\textsubscript{2}).

8.0 Sample Collection and Analysis

8.1 Selection of Sampling Sites.

8.1.1 Control Device Inlet. Select a sampling site sufficiently downstream of the engine so that the combustion gases should be well mixed. Use a single sampling extraction point near the center of the duct (e.g., within the 10 percent centroidal area), unless instructed otherwise.

8.1.2 Exhaust Gas Outlet. Select a sampling site located at least two stack diameters downstream of any disturbance (e.g., turbocharger exhaust, crossover junction or recirculation take-off) and at least one-half stack diameter upstream of the gas discharge to the atmosphere. Use a single sampling extraction point near the center of the duct (e.g., within the 10 percent centroidal area), unless instructed otherwise.

8.2 Stack Gas Collection and Analysis. Prior to the first stack gas sampling run, conduct the pre-sampling calibration in accordance with Section 10.1. Use Figure 1 to record all data. Zero the analyzer with zero gas. Confirm and record that the scrubber media color is correct and not exhausted. Then position the probe at the sampling point and begin the sampling run at the same flow rate used during the up-scale calibration. Record the start time. Record all EC cell output responses and the flow rate during the "sample conditioning phase" once per minute until constant readings are obtained. Then begin the "measurement data phase" and record readings every 15 seconds for at least two minutes (or eight readings), or as otherwise required to achieve two continuous minutes of data that meet the specification given in Section 13.1. Finally, perform the "refresh phase" by introducing dry air, free from CO and other combustion gases, until several minute-to-minute readings of
consistent value have been obtained. For each run use the “measurement data phase” readings to calculate the average stack gas CO and O₂ concentrations.

8.3 EC Cell Rate. Maintain the EC cell sample flow rate so that it does not vary by more than ±10 percent throughout the pre-sampling calibration, stack gas sampling and post-sampling calibration check. Alternatively, the EC cell sample flow rate can be maintained within a tolerance range that does not affect the gas concentration readings by more than ±3 percent, as instructed by the EC cell manufacturer.

9.0 Quality Control (Reserved)

10.0 Calibration and Standardization

10.1 Pre-Sampling Calibration. Conduct the following protocol once for each nominal range to be used on each EC cell before performing a stack gas sampling run on each field sampling day. Repeat the calibration if you replace an EC cell before completing all of the sampling runs. There is no prescribed order for calibration of the EC cells; however, each cell must complete the measurement data phase during calibration. Assemble the measurement system by following the manufacturer’s recommended protocols including for preparing and preconditioning the EC cell. Assure the measurement system has no leaks and verify the gas scrubbing agent is not depleted. Use Figure 1 to record all data.

10.1.1 Zero Calibration. For both the O₂ and CO cells, introduce zero gas to the measurement system (e.g., at the calibration assembly) and record the concentration reading every minute until readings are constant for at least two consecutive minutes. Include the time and sample flow rate. Repeat the steps in this section at least once to verify the zero calibration for each component gas.

10.1.2 Zero Calibration Tolerance. For each zero gas introduction, the zero level output must be less than or equal to ±3 percent of the up-scale gas value or ±1 ppm, whichever is less restrictive, for the CO channel and less than or equal to ±0.3 percent O₂ for the O₂ channel.

10.1.3 Up-Scale Calibration. Individually introduce each calibration gas to the measurement system (e.g., at the calibration assembly) and record the start time. Record all EC cell output responses and the flow rate during this “sample conditioning phase” once per minute until readings are constant for at least two minutes. Then begin the “measurement data phase” and record readings every 15 seconds for a total of two minutes, or as otherwise required. Finally, perform the “refresh phase” by introducing dry air, free from CO and other combustion gases, until readings are constant for at least two consecutive minutes. Then repeat the steps in this section at least once to verify the calibration for each component gas. Introduce all gases to flow through the entire sample handling system (i.e., at the exit end of the sampling probe or the calibration assembly).

10.1.4 Up-Scale Calibration Error. The mean of the difference of the “measurement data phase” readings from the reported standard gas value must be less than or equal to ±5 percent or ±1 ppm for CO or ±0.5 percent O₂, whichever is less restrictive, respectively. The maximum allowable deviation from the mean measured value of any single “measurement data phase” reading must be less than or equal to ±2 percent or ±1 ppm for CO or ±0.5 percent O₂, whichever is less restrictive, respectively.

10.2 Post-Sampling Calibration Check. Conduct a stack gas post-sampling calibration check after the stack gas sampling run or set of runs and within 12 hours of the initial calibration. Conduct up-scale and zero calibration checks using the protocol in Section 10.1. Make no changes to the sampling system or EC cell calibration until all post-sampling calibration checks have been recorded. If either the zero or up-scale calibration error exceeds the respective specification in Sections 10.1.2 and 10.1.4 then all measurement data collected since the previous successful calibrations are invalid and re-calibration and re-sampling are required. If the sampling system is disassembled or the EC cell calibration is adjusted, repeat the calibration check before conducting the next analyzer sampling run.

11.0 Analytical Procedure

The analytical procedure is fully discussed in Section 8.

12.0 Calculations and Data Analysis

Determine the CO and O₂ concentrations for each stack gas sampling run by calculating the mean gas concentrations of the data recorded during the “measurement data phase”.

13.0 Protocol Performance

Use the following protocols to verify consistent analyzer performance during each field sampling day.

13.1 Measurement Data Phase Performance Check. Calculate the mean of the readings from the “measurement data phase”. The maximum allowable deviation from the mean for each of the individual readings is ±2 percent, or ±1 ppm,
whichever is less restrictive. Record the mean value and maximum deviation for each gas monitored. Data must conform to Section 10.1.4. The EC cell flow rate must conform to the specification in Section 8.3.

Example: A measurement data phase is invalid if the maximum deviation of any single reading comprising that mean is greater than ±2 percent or ±1 ppm (the default criteria). For example, if the mean = 30 ppm, single readings of below 29 ppm and above 31 ppm are disallowed.

13.2 Interference Check. Before the initial use of the EC cell and interference gas scrubber in the field, and semi-annually thereafter, challenge the interference gas scrubber with NO and NO₂ gas standards that are generally recognized as representative of diesel-fueled engine NO and NO₂ emission values. Record the responses displayed by the CO EC cell and other pertinent data on Figure 1 or a similar form.

13.2.1 Interference Response. The combined NO and NO₂ interference response should be less than or equal to ±5 percent of the up-scale CO calibration gas concentration.

13.3 Repeatability Check. Conduct the following check once for each nominal range that is to be used on the CO EC cell within 5 days prior to each field sampling program. If a field sampling program lasts longer than 5 days, repeat this check every 5 days. Immediately repeat the check if the EC cell is replaced or if the EC cell is exposed to gas concentrations greater than 150 percent of the highest up-scale gas concentration.

13.3.1 Repeatability Check Procedure. Perform a complete EC cell sampling run (all three phases) by introducing the CO calibration gas to the measurement system and record the response. Follow Section 10.1.3. Use Figure 1 to record all data. Repeat the run three times for a total of four complete runs. During the four repeatability check runs, do not adjust the system except where necessary to achieve the correct calibration gas flow rate at the analyzer.

13.3.2 Repeatability Check Calculations. Determine the highest and lowest average “measurement data phase” CO concentrations from the four repeatability check runs and record the results on Figure 1 or a similar form. The absolute value of the difference between the maximum and minimum average values recorded must not vary more than ±3 percent or ±1 ppm of the up-scale gas value, whichever is less restrictive.

14.0 Pollution Prevention (Reserved)

15.0 Waste Management (Reserved)

16.0 Alternative Procedures (Reserved)

17.0 References

Table 1: Appendix A—Sampling Run Data.

<table>
<thead>
<tr>
<th>Run Type:</th>
<th>Facility__________</th>
<th>Engine I.D.__________</th>
<th>Date______</th>
</tr>
</thead>
<tbody>
<tr>
<td>(X)</td>
<td>Pre-Sample Calibration</td>
<td>Stack Gas Sample</td>
<td>Post-Sample Cal. Check</td>
</tr>
<tr>
<td>Run #</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Gas</td>
<td>O₂</td>
<td>CO</td>
<td>O₂</td>
</tr>
<tr>
<td>Sample Cond. Phase</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Measurement Data Phase</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 1: Appendix A—Sampling Run Data.

<table>
<thead>
<tr>
<th>Run Type:</th>
<th>Facility__________</th>
<th>Engine I.D.__________</th>
<th>Date______</th>
</tr>
</thead>
<tbody>
<tr>
<td>(X)</td>
<td>Pre-Sample Calibration</td>
<td>Stack Gas Sample</td>
<td>Post-Sample Cal. Check</td>
</tr>
<tr>
<td>Run #</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Gas</td>
<td>O₂</td>
<td>CO</td>
<td>O₂</td>
</tr>
<tr>
<td>Sample Cond. Phase</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Measurement Data Phase</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Appendix F
NSPS Subpart JJJJ
Title 40: Protection of Environment
PART 60—STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES (CONTINUED)

Subpart JJJJ—Standards of Performance for Stationary Spark Ignition Internal Combustion Engines

Contents

WHAT THIS SUBPART COVERS

§60.4230 Am I subject to this subpart?

EMISSION STANDARDS FOR MANUFACTURERS

§60.4231 What emission standards must I meet if I am a manufacturer of stationary SI internal combustion engines or equipment containing such engines?
§60.4232 How long must my engines meet the emission standards if I am a manufacturer of stationary SI internal combustion engines?

EMISSION STANDARDS FOR OWNERS AND OPERATORS

§60.4233 What emission standards must I meet if I am an owner or operator of a stationary SI internal combustion engine?
§60.4234 How long must I meet the emission standards if I am an owner or operator of a stationary SI internal combustion engine?

OTHER REQUIREMENTS FOR OWNERS AND OPERATORS

§60.4235 What fuel requirements must I meet if I am an owner or operator of a stationary SI gasoline fired internal combustion engine subject to this subpart?
§60.4236 What is the deadline for importing or installing stationary SI ICE produced in previous model years?
§60.4237 What are the monitoring requirements if I am an owner or operator of an emergency stationary SI internal combustion engine?

COMPLIANCE REQUIREMENTS FOR MANUFACTURERS

§60.4238 What are my compliance requirements if I am a manufacturer of stationary SI internal combustion engines ≤19 KW (25 HP) or a manufacturer of equipment containing such engines?
§60.4239 What are my compliance requirements if I am a manufacturer of stationary SI internal combustion engines >19 KW (25 HP) that use gasoline or a manufacturer of equipment containing such engines?
§60.4240 What are my compliance requirements if I am a manufacturer of stationary SI internal combustion engines >19 KW (25 HP) that are rich burn engines that use LPG or a manufacturer of equipment containing such engines?
§60.4241 What are my compliance requirements if I am a manufacturer of stationary SI internal combustion engines participating in the voluntary certification program or a manufacturer of equipment containing such engines?
§60.4242 What other requirements must I meet if I am a manufacturer of stationary SI internal combustion engines or equipment containing stationary SI internal combustion engines or a manufacturer of equipment containing such engines?

COMPLIANCE REQUIREMENTS FOR OWNERS AND OPERATORS

§60.4243 What are my compliance requirements if I am an owner or operator of a stationary SI internal combustion engine?

TESTING REQUIREMENTS FOR OWNERS AND OPERATORS

§60.4244 What test methods and other procedures must I use if I am an owner or operator of a stationary SI internal combustion engine?

NOTIFICATION, REPORTS, AND RECORDS FOR OWNERS AND OPERATORS
§60.4245 What are my notification, reporting, and recordkeeping requirements if I am an owner or operator of a stationary SI internal combustion engine?

GENERAL PROVISIONS

§60.4246 What parts of the General Provisions apply to me?

MOBILE SOURCE PROVISIONS

§60.4247 What parts of the mobile source provisions apply to me if I am a manufacturer of stationary SI internal combustion engines or a manufacturer of equipment containing such engines?

DEFINITIONS

§60.4248 What definitions apply to this subpart?

Table 1 to Subpart JJJJ of Part 60—NOx, CO, and VOC Emission Standards for Stationary Non-Emergency SI Engines ≥100 HP (Except Gasoline and Rich Burn LPG), Stationary SI Landfill/Digester Gas Engines, and Stationary Emergency Engines >25 HP

Table 2 to Subpart JJJJ of Part 60—Requirements for Performance Tests

Table 3 to Subpart JJJJ of Part 60—Applicability of General Provisions to Subpart JJJJ

Table 4 to Subpart JJJJ of Part 60—Applicability of Mobile Source Provisions for Manufacturers Participating in the Voluntary Certification Program and Certifying Stationary SI ICE to Emission Standards in Table 1 of Subpart JJJJ

SOURCE: 73 FR 3591, Jan. 18, 2008, unless otherwise noted.

WHAT THIS SUBPART COVERS

§60.4230 Am I subject to this subpart?

(a) The provisions of this subpart are applicable to manufacturers, owners, and operators of stationary spark ignition (SI) internal combustion engines (ICE) as specified in paragraphs (a)(1) through (6) of this section. For the purposes of this subpart, the date that construction commences is the date the engine is ordered by the owner or operator.

(1) Manufacturers of stationary SI ICE with a maximum engine power less than or equal to 19 kilowatt (KW) (25 horsepower (HP)) that are manufactured on or after July 1, 2008.

(2) Manufacturers of stationary SI ICE with a maximum engine power greater than 19 KW (25 HP) that are gasoline fueled or that are rich burn engines fueled by liquefied petroleum gas (LPG), where the date of manufacture is:

(i) On or after July 1, 2008; or

(ii) On or after January 1, 2009, for emergency engines.

(3) Manufacturers of stationary SI ICE with a maximum engine power greater than 19 KW (25 HP) that are not gasoline fueled and are not rich burn engines fueled by LPG, where the manufacturer participates in the voluntary manufacturer certification program described in this subpart and where the date of manufacture is:

(i) On or after July 1, 2007, for engines with a maximum engine power greater than or equal to 500 HP (except lean burn engines with a maximum engine power greater than or equal to 500 HP and less than 1,350 HP);

(ii) On or after January 1, 2008, for lean burn engines with a maximum engine power greater than or equal to 500 HP and less than 1,350 HP;

(iii) On or after July 1, 2008, for engines with a maximum engine power less than 500 HP; or

(iv) On or after January 1, 2009, for emergency engines.

(4) Owners and operators of stationary SI ICE that commence construction after June 12, 2006, where the stationary SI ICE are manufactured:

(i) On or after July 1, 2007, for engines with a maximum engine power greater than or equal to 500 HP (except lean burn engines with a maximum engine power greater than or equal to 500 HP and less than 1,350 HP);
(ii) on or after January 1, 2008, for lean burn engines with a maximum engine power greater than or equal to 500 HP and less than 1,350 HP;

(iii) on or after July 1, 2008, for engines with a maximum engine power less than 500 HP; or

(iv) on or after January 1, 2009, for emergency engines with a maximum engine power greater than 19 KW (25 HP).

(5) Owners and operators of stationary SI ICE that are modified or reconstructed after June 12, 2006, and any person that modifies or reconstructs any stationary SI ICE after June 12, 2006.

(6) The provisions of §60.4236 of this subpart are applicable to all owners and operators of stationary SI ICE that commence construction after June 12, 2006.

(b) The provisions of this subpart are not applicable to stationary SI ICE being tested at an engine test cell/stand.

(c) If you are an owner or operator of an area source subject to this subpart, you are exempt from the obligation to obtain a permit under 40 CFR part 70 or 40 CFR part 71, provided you are not required to obtain a permit under 40 CFR 70.3(a) or 40 CFR 71.3(a) for a reason other than your status as an area source under this subpart. Notwithstanding the previous sentence, you must continue to comply with the provisions of this subpart as applicable.

(d) For the purposes of this subpart, stationary SI ICE using alcohol-based fuels are considered gasoline engines.

(e) Stationary SI ICE may be eligible for exemption from the requirements of this subpart as described in 40 CFR part 1068, subpart C (or the exemptions described in 40 CFR parts 90 and 1048, for engines that would need to be certified to standards in those parts), except that owners and operators, as well as manufacturers, may be eligible to request an exemption for national security.

(f) Owners and operators of facilities with internal combustion engines that are acting as temporary replacement units and that are located at a stationary source for less than 1 year and that have been properly certified as meeting the standards that would be applicable to such engine under the appropriate nonroad engine provisions, are not required to meet any other provisions under this subpart with regard to such engines.

[73 FR 3591, Jan. 18, 2008, as amended at 76 FR 37972, June 28, 2011]
than or equal to 1,000 cubic centimeters (cc) that use gasoline to the certification emission standards and other requirements for new nonroad SI engines in 40 CFR part 90 or 1054, as appropriate.

(c) Stationary SI internal combustion engine manufacturers must certify their stationary SI ICE with a maximum engine power greater than 19 KW (25 HP) (except emergency stationary ICE with a maximum engine power greater than 25 HP and less than 130 HP) that are rich burn engines that use LPG and that are manufactured on or after the applicable date in §60.4230(a)(2), or manufactured on or after the applicable date in §60.4230(a)(4) for emergency stationary ICE with a maximum engine power greater than or equal to 130 HP, to the certification emission standards and other requirements for new nonroad SI engines in 40 CFR part 1048. Stationary SI internal combustion engine manufacturers must certify their emergency stationary SI ICE greater than 25 HP and less than 130 HP that are rich burn engines that use LPG and that are manufactured on or after the applicable date in §60.4230(a)(4) to the Phase 1 emission standards in 40 CFR 90.103, applicable to class II engines, and other requirements for new nonroad SI engines in 40 CFR part 90. Stationary SI internal combustion engine manufacturers may certify their stationary SI ICE with a maximum engine power less than or equal to 30 KW (40 HP) with a total displacement less than or equal to 1,000 cc that are rich burn engines that use LPG to the certification emission standards and other requirements for new nonroad SI engines in 40 CFR part 90 or 1054, as appropriate.

(d) Stationary SI internal combustion engine manufacturers who choose to certify their stationary SI ICE with a maximum engine power greater than 19 KW (25 HP) and less than 75 KW (100 HP) (except gasoline and rich burn engines that use LPG and emergency stationary ICE with a maximum engine power greater than 25 HP and less than 130 HP) under the voluntary manufacturer certification program described in this subpart must certify those engines to the certification emission standards for new nonroad SI engines in 40 CFR part 1048. Stationary SI internal combustion engine manufacturers who choose to certify their emergency stationary SI ICE greater than 25 HP and less than 130 HP (except gasoline and rich burn engines that use LPG), must certify those engines to the Phase 1 emission standards in 40 CFR 90.103, applicable to class II engines, for new nonroad SI engines in 40 CFR part 90. Stationary SI internal combustion engine manufacturers may certify their stationary SI ICE with a maximum engine power less than or equal to 30 KW (40 HP) with a total displacement less than or equal to 1,000 cc (except gasoline and rich burn engines that use LPG) to the certification emission standards for new nonroad SI engines in 40 CFR part 90 or 1054, as appropriate. For stationary SI ICE with a maximum engine power greater than 19 KW (25 HP) and less than 75 KW (100 HP) (except gasoline and rich burn engines that use LPG and emergency stationary ICE with a maximum engine power greater than 25 HP and less than 130 HP) manufactured prior to January 1, 2011, manufacturers may choose to certify these engines to the standards in Table 1 to this subpart applicable to engines with a maximum engine power greater than or equal to 100 HP and less than 500 HP.

(e) Stationary SI internal combustion engine manufacturers who choose to certify their stationary SI ICE with a maximum engine power greater than or equal to 75 KW (100 HP) (except gasoline and rich burn engines that use LPG) under the voluntary manufacturer certification program described in this subpart must certify those engines to the emission standards in Table 1 to this subpart. Stationary SI internal combustion engine manufacturers may certify their stationary SI ICE with a maximum engine power greater than or equal to 75 KW (100 HP) that are lean burn engines that use LPG to the certification emission standards for new nonroad SI engines in 40 CFR part 1048. For stationary SI ICE with a maximum engine power greater than or equal to 100 HP (75 KW) and less than 500 HP (373 KW) manufactured prior to January 1, 2011, and for stationary SI ICE with a maximum engine power greater than or equal to 500 HP (373 KW) manufactured prior to July 1, 2010, manufacturers may choose to certify these engines to the certification emission standards for new nonroad SI engines in 40 CFR part 1048 applicable to engines that are not severe duty engines.

(f) Manufacturers of equipment containing stationary SI internal combustion engines meeting the provisions of 40 CFR part 1054 must meet the provisions of 40 CFR part 1060, to the extent they apply to equipment manufacturers.

(g) Notwithstanding the requirements in paragraphs (a) through (c) of this section, stationary SI internal combustion engine manufacturers are not required to certify reconstructed engines; however manufacturers may elect to do so. The reconstructed engine must be certified to the emission standards specified in paragraphs (a) through (e) of this section that are applicable to the model year, maximum engine power and displacement of the reconstructed stationary SI ICE.

§60.4232 How long must my engines meet the emission standards if I am a manufacturer of stationary SI internal combustion engines?

Engines manufactured by stationary SI internal combustion engine manufacturers must meet the emission standards as required in §60.4231 during the certified emissions life of the engines.

EMISSION STANDARDS FOR OWNERS AND OPERATORS
§60.4233 What emission standards must I meet if I am an owner or operator of a stationary SI internal combustion engine?

(a) Owners and operators of stationary SI ICE with a maximum engine power less than or equal to 19 KW (25 HP) manufactured on or after July 1, 2008, must comply with the emission standards in §60.4231(a) for their stationary SI ICE.

(b) Owners and operators of stationary SI ICE with a maximum engine power greater than 19 KW (25 HP) manufactured on or after the applicable date in §60.4230(a)(4) that use gasoline must comply with the emission standards in §60.4231(b) for their stationary SI ICE.

(c) Owners and operators of stationary SI ICE with a maximum engine power greater than 19 KW (25 HP) manufactured on or after the applicable date in §60.4230(a)(4) that are rich burn engines that use LPG must comply with the emission standards in §60.4231(c) for their stationary SI ICE.

(d) Owners and operators of stationary SI ICE with a maximum engine power greater than 19 KW (25 HP) and less than 75 KW (100 HP) (except gasoline and rich burn engines that use LPG) must comply with the emission standards for field testing in 40 CFR 1048.101(c) for their non-emergency stationary SI ICE and with the emission standards in Table 1 to this subpart for their emergency stationary SI ICE. Owners and operators of stationary SI ICE with a maximum engine power greater than 19 KW (25 HP) and less than 75 KW (100 HP) manufactured prior to January 1, 2011, that were certified to the standards in Table 1 to this subpart applicable to engines with a maximum engine power greater than or equal to 100 HP and less than 500 HP, may optionally choose to meet those standards.

(e) Owners and operators of stationary SI ICE with a maximum engine power greater than or equal to 75 KW (100 HP) (except gasoline and rich burn engines that use LPG) must comply with the emission standards in Table 1 to this subpart for their stationary SI ICE. For owners and operators of stationary SI ICE with a maximum engine power greater than or equal to 100 HP (except gasoline and rich burn engines that use LPG) manufactured prior to January 1, 2011 that were certified to the certification emission standards in 40 CFR part 1048 applicable to engines that are not severe duty engines, if such stationary SI ICE was certified to a carbon monoxide (CO) standard above the standard in Table 1 to this subpart, then the owners and operators may meet the CO certification (not field testing) standard for which the engine was certified.

(f) Owners and operators of any modified or reconstructed stationary SI ICE subject to this subpart must meet the requirements as specified in paragraphs (f)(1) through (5) of this section.

(1) Owners and operators of stationary SI ICE with a maximum engine power less than or equal to 19 KW (25 HP), that are modified or reconstructed after June 12, 2006, must comply with emission standards in §60.4231(a) for their stationary SI ICE. Engines with a date of manufacture prior to July 1, 2008 must comply with the emission standards specified in §60.4231(a) applicable to engines manufactured on July 1, 2008.

(2) Owners and operators of stationary SI ICE with a maximum engine power greater than 19 KW (25 HP) that are gasoline engines and are modified or reconstructed after June 12, 2006, must comply with the emission standards in §60.4231(b) for their stationary SI ICE. Engines with a date of manufacture prior to July 1, 2008 (or January 1, 2009 for emergency engines) must comply with the emission standards specified in §60.4231(b) applicable to engines manufactured on July 1, 2008 (or January 1, 2009 for emergency engines).

(3) Owners and operators of stationary SI ICE with a maximum engine power greater than 19 KW (25 HP) that are rich burn engines that use LPG, that are modified or reconstructed after June 12, 2006, must comply with the same emission standards as those specified in §60.4231(c). Engines with a date of manufacture prior to July 1, 2008 (or January 1, 2009 for emergency engines) must comply with the emission standards specified in §60.4231(c) applicable to engines manufactured on July 1, 2008 (or January 1, 2009 for emergency engines).

(4) Owners and operators of stationary SI natural gas and lean burn LPG engines with a maximum engine power greater than 19 KW (25 HP), that are modified or reconstructed after June 12, 2006, must comply with the same emission standards as those specified in paragraph (d) or (e) of this section, except that such owners and operators of non-emergency engines and emergency engines greater than or equal to 130 HP must meet a nitrogen oxides (NOx) emission standard of 3.0 grams per HP-hour (g/HP-hr), a CO emission standard of 4.0 g/HP-hr (5.0 g/HP-hr for non-emergency engines less than 100 HP), and a volatile organic compounds (VOC) emission standard of 1.0 g/HP-hr, or a NOx emission standard of 250 ppmvd at 15 percent oxygen (O2), a CO emission standard 540 ppmvd at 15 percent O2 (675 ppmvd at 15 percent O2 for non-emergency engines less than 100 HP), and a VOC emission standard of 86 ppmvd at 15 percent O2, where the date of manufacture of the engine is:

(i) Prior to July 1, 2007, for non-emergency engines with a maximum engine power greater than or equal to 500 HP (except lean burn natural gas engines and LPG engines with a maximum engine power greater than or equal to 500 HP and less than
(ii) Prior to July 1, 2008, for non-emergency engines with a maximum engine power less than 500 HP;

(iii) Prior to January 1, 2009, for emergency engines;

(iv) Prior to January 1, 2008, for non-emergency lean burn natural gas engines and LPG engines with a maximum engine power greater than or equal to 500 HP and less than 1,350 HP.

(5) Owners and operators of stationary SI landfill/digester gas ICE engines with a maximum engine power greater than 19 KW (25 HP), that are modified or reconstructed after June 12, 2006, must comply with the same emission standards as those specified in paragraph (e) of this section for stationary landfill/digester gas engines. Engines with maximum engine power less than 500 HP and a date of manufacture prior to July 1, 2008 must comply with the emission standards specified in paragraph (e) of this section for stationary landfill/digester gas ICE with a maximum engine power less than 500 HP manufactured on July 1, 2008. Engines with a maximum engine power greater than or equal to 500 HP (except lean burn engines greater than or equal to 500 HP and less than 1,350 HP) and a date of manufacture prior to July 1, 2007 must comply with the emission standards specified in paragraph (e) of this section for stationary landfill/digester gas ICE with a maximum engine power greater than or equal to 500 HP (except lean burn engines greater than or equal to 500 HP and less than 1,350 HP) manufactured on July 1, 2007. Lean burn engines greater than or equal to 500 HP and less than 1,350 HP with a date of manufacture prior to January 1, 2008 must comply with the emission standards specified in paragraph (e) of this section for stationary landfill/digester gas ICE that are lean burn engines greater than or equal to 500 HP and less than 1,350 HP and manufactured on January 1, 2008.

(g) Owners and operators of stationary SI wellhead gas ICE engines may petition the Administrator for approval on a case-by-case basis to meet emission standards no less stringent than the emission standards that apply to stationary emergency SI engines greater than 25 HP and less than 130 HP due to the presence of high sulfur levels in the fuel, as specified in Table 1 to this subpart. The request must, at a minimum, demonstrate that the fuel has high sulfur levels that prevent the use of aftertreatment controls and also that the owner has reasonably made all attempts possible to obtain an engine that will meet the standards without the use of aftertreatment controls. The petition must request the most stringent standards reasonably applicable to the engine using the fuel.

(h) Owners and operators of stationary SI ICE that are required to meet standards that reference 40 CFR 1048.101 must, if testing their engines in use, meet the standards in that section applicable to field testing, except as indicated in paragraph (e) of this section.

[73 FR 3591, Jan. 18, 2008, as amended at 76 FR 37973, June 28, 2011]
maximum engine power greater than or equal to 500 HP and less than 1,350 HP that do not meet the applicable requirements in §60.4233 may not be installed after January 1, 2010.

(c) For emergency stationary SI ICE with a maximum engine power of greater than 19 KW (25 HP), owners and operators may not install engines that do not meet the applicable requirements in §60.4233 after January 1, 2011.

(d) In addition to the requirements specified in §§60.4231 and 60.4233, it is prohibited to import stationary SI ICE less than or equal to 19 KW (25 HP), stationary rich burn LPG SI ICE, and stationary gasoline SI ICE that do not meet the applicable requirements specified in paragraphs (a), (b), and (c) of this section, after the date specified in paragraph (a), (b), and (c) of this section.

(e) The requirements of this section do not apply to owners and operators of stationary SI ICE that have been modified or reconstructed, and they do not apply to engines that were removed from one existing location and reinstalled at a new location.

§60.4237 What are the monitoring requirements if I am an owner or operator of an emergency stationary SI internal combustion engine?

(a) Starting on July 1, 2010, if the emergency stationary SI internal combustion engine that is greater than or equal to 500 HP that was built on or after July 1, 2010, does not meet the standards applicable to non-emergency engines, the owner or operator must install a non-resettable hour meter.

(b) Starting on January 1, 2011, if the emergency stationary SI internal combustion engine that is greater than or equal to 130 HP and less than 500 HP that was built on or after January 1, 2011, does not meet the standards applicable to non-emergency engines, the owner or operator must install a non-resettable hour meter.

(c) If you are an owner or operator of an emergency stationary SI internal combustion engine that is less than 130 HP, was built on or after July 1, 2008, and does not meet the standards applicable to non-emergency engines, you must install a non-resettable hour meter upon startup of your emergency engine.

COMPLIANCE REQUIREMENTS FOR MANUFACTURERS

§60.4238 What are my compliance requirements if I am a manufacturer of stationary SI internal combustion engines ≤19 KW (25 HP) or a manufacturer of equipment containing such engines?

Stationary SI internal combustion engine manufacturers who are subject to the emission standards specified in §60.4231(a) must certify their stationary SI ICE using the certification procedures required in 40 CFR part 90, subpart B, or 40 CFR part 1054, subpart C, as applicable, and must test their engines as specified in those parts. Manufacturers of equipment containing stationary SI internal combustion engines meeting the provisions of 40 CFR part 1054 must meet the provisions of 40 CFR part 1060, subpart C, to the extent they apply to equipment manufacturers.

[73 FR 59176, Oct. 8, 2008]

§60.4239 What are my compliance requirements if I am a manufacturer of stationary SI internal combustion engines >19 KW (25 HP) that use gasoline or a manufacturer of equipment containing such engines?

Stationary SI internal combustion engine manufacturers who are subject to the emission standards specified in §60.4231(b) must certify their stationary SI ICE using the certification procedures required in 40 CFR part 1048, subpart C, and must test their engines as specified in that part. Stationary SI internal combustion engine manufacturers who certify their stationary SI ICE with a maximum engine power less than or equal to 30 KW (40 HP) with a total displacement less than or equal to 1,000 cc to the certification emission standards and other requirements for new nonroad SI engines in 40 CFR part 90 or 40 CFR part 1054, and manufacturers of stationary SI emergency engines that are greater than 25 HP and less than 130 HP who meet the Phase 1 emission standards in 40 CFR 90.103, applicable to class II engines, must certify their stationary SI ICE using the certification procedures required in 40 CFR part 90, subpart B, or 40 CFR part 1054, subpart C, as applicable, and must test their engines as specified in those parts. Manufacturers of equipment containing stationary SI internal combustion engines meeting the provisions of 40 CFR part 1054 must meet the provisions of 40 CFR part 1060, subpart C, to the extent they apply to equipment manufacturers.

[73 FR 59176, Oct. 8, 2008]
§60.4240 What are my compliance requirements if I am a manufacturer of stationary SI internal combustion engines greater than 19 KW (25 HP) that are rich burn engines that use LPG or a manufacturer of equipment containing such engines?

Stationary SI internal combustion engine manufacturers who are subject to the emission standards specified in §60.4231(c) must certify their stationary SI ICE using the certification procedures required in 40 CFR part 1048, subpart C, and must test their engines as specified in that part. Stationary SI internal combustion engine manufacturers who certify their stationary SI ICE with a maximum engine power less than or equal to 30 KW (40 HP) with a total displacement less than or equal to 1,000 cc to the certification emission standards and other requirements for new nonroad SI engines in 40 CFR part 90 or 40 CFR part 1054, and manufacturers of stationary SI emergency engines that are greater than 25 HP and less than 130 HP who meet the Phase 1 emission standards in 40 CFR 90.103, applicable to class II engines, must certify their stationary SI ICE using the certification procedures required in 40 CFR part 90, subpart B, or 40 CFR part 1054, subpart C, as applicable, and must test their engines as specified in those parts. Manufacturers of equipment containing stationary SI internal combustion engines meeting the provisions of 40 CFR part 1054 must meet the provisions of 40 CFR part 1060, subpart C, to the extent they apply to equipment manufacturers.

[73 FR 59176, Oct. 8, 2008]

§60.4241 What are my compliance requirements if I am a manufacturer of stationary SI internal combustion engines participating in the voluntary certification program or a manufacturer of equipment containing such engines?

(a) Manufacturers of stationary SI internal combustion engines with a maximum engine power greater than 19 KW (25 HP) that do not use gasoline and are not rich burn engines that use LPG can choose to certify their engines to the emission standards in §60.4231(d) or (e), as applicable, under the voluntary certification program described in this subpart. Manufacturers who certify their engines under the voluntary certification program must meet the requirements as specified in paragraphs (b) through (g) of this section. In addition, manufacturers of stationary SI internal combustion engines who choose to certify their engines under the voluntary certification program, must also meet the requirements as specified in §60.4247.

(b) Manufacturers of engines other than those certified to standards in 40 CFR part 90 or 40 CFR part 1054 must certify their stationary SI ICE using the certification procedures required in 40 CFR part 1048, subpart C, and must follow the same test procedures that apply to large SI nonroad engines under 40 CFR part 1048, but must use the D-1 cycle of International Organization of Standardization 8178-4: 1996(E) (incorporated by reference, see 40 CFR 60.17) or the test cycle requirements specified in Table 3 to 40 CFR 1048.505, except that Table 3 of 40 CFR 1048.505 applies to high load engines only. Stationary SI internal combustion engine manufacturers who certify their stationary SI ICE with a maximum engine power less than or equal to 30 KW (40 HP) with a total displacement less than or equal to 1,000 cc to the certification emission standards and other requirements for new nonroad SI engines in 40 CFR part 90 or 40 CFR part 1054, and manufacturers of emergency engines that are greater than 25 HP and less than 130 HP who meet the Phase 1 standards in 40 CFR 90.103, applicable to class II engines, must certify their stationary SI ICE using the certification procedures required in 40 CFR part 90, subpart B, or 40 CFR part 1054, subpart C, as applicable, and must test their engines as specified in those parts. Manufacturers of equipment containing stationary SI internal combustion engines meeting the provisions of 40 CFR part 1054 must meet the provisions of 40 CFR part 1060, subpart C, to the extent they apply to equipment manufacturers.

(c) Certification of stationary SI ICE to the emission standards specified in §60.4231(d) or (e), as applicable, is voluntary, but manufacturers who decide to certify are subject to all of the requirements indicated in this subpart with regard to the engines included in their certification. Manufacturers must clearly label their stationary SI engines as certified or non-certified engines.

(d) Manufacturers of natural gas fired stationary SI ICE who conduct voluntary certification of stationary SI ICE to the emission standards specified in §60.4231(d) or (e), as applicable, must certify their engines for operation using fuel that meets the definition of pipeline-quality natural gas. The fuel used for certifying stationary SI natural gas engines must meet the definition of pipeline-quality natural gas as described in §60.4248. In addition, the manufacturer must provide information to the owner and operator of the certified stationary SI engine including the specifications of the pipeline-quality natural gas to which the engine is certified and what adjustments the owner or operator must make to the engine when installed in the field to ensure compliance with the emission standards.

(e) Manufacturers of stationary SI ICE that are lean burn engines fueled by LPG who conduct voluntary certification of stationary SI ICE to the emission standards specified in §60.4231(d) or (e), as applicable, must certify their engines for operation using fuel that meets the specifications in 40 CFR 1065.720.

(f) Manufacturers may certify their engines for operation using gaseous fuels in addition to pipeline-quality natural gas; however, the manufacturer must specify the properties of that fuel and provide testing information showing that the engine will meet the emission standards specified in §60.4231(d) or (e), as applicable, when operating on that fuel.

[73 FR 59176, Oct. 8, 2008]
also provide instructions for configuring the stationary engine to meet the emission standards on fuels that do not meet the pipeline-quality natural gas definition. The manufacturer must also provide information to the owner and operator of the certified stationary SI engine regarding the configuration that is most conducive to reduced emissions where the engine will be operated on gaseous fuels with different quality than the fuel that it was certified to.

(g) A stationary SI engine manufacturer may certify an engine family solely to the standards applicable to landfill/digester gas engines as specified in §60.4231(d) or (e), as applicable, but must certify their engines for operation using landfill/digester gas and must add a permanent label stating that the engine is for use only in landfill/digester gas applications. The label must be added according to the labeling requirements specified in 40 CFR 1048.135(b).

(h) For purposes of this subpart, when calculating emissions of volatile organic compounds, emissions of formaldehyde should not be included.

(i) For engines being certified to the voluntary certification standards in Table 1 of this subpart, the VOC measurement shall be made by following the procedures in 40 CFR 1065.260 and 1065.265 in order to determine the total NMHC emissions by using a flame-ionization detector and non-methane cutter. As an alternative to the nonmethane cutter, manufacturers may use a gas chromatograph as allowed under 40 CFR 1065.267 and may measure ethane, as well as methane, for excluding such levels from the total VOC measurement.

certification or in an earlier submission. We may approve an alternate warranty period for an engine family subject to the following conditions:

(1) The engines must be equipped with non-resettable hour meters.

(2) The engines must be designed to operate for a number of hours substantially greater than the applicable certified emissions life.

(3) The emission-related warranty for the engines may not be shorter than any published warranty offered by the manufacturer without charge for the engines. Similarly, the emission-related warranty for any component shall not be shorter than any published warranty offered by the manufacturer without charge for that component.

[73 FR 3591, Jan. 18, 2008, as amended at 73 FR 59177, Oct. 8, 2008]

COMPLIANCE REQUIREMENTS FOR OWNERS AND OPERATORS

§60.4243 What are my compliance requirements if I am an owner or operator of a stationary SI internal combustion engine?

(a) If you are an owner or operator of a stationary SI internal combustion engine that is manufactured after July 1, 2008, and must comply with the emission standards specified in §60.4233(a) through (c), you must comply by purchasing an engine certified to the emission standards in §60.4231(a) through (c), as applicable, for the same engine class and maximum engine power. In addition, you must meet one of the requirements specified in (a)(1) and (2) of this section.

(1) If you operate and maintain the certified stationary SI internal combustion engine and control device according to the manufacturer's emission-related written instructions, you must keep records of conducted maintenance to demonstrate compliance, but no performance testing is required if you are an owner or operator. You must also meet the requirements as specified in 40 CFR part 1068, subparts A through D, as they apply to you. If you adjust engine settings according to and consistent with the manufacturer's instructions, your stationary SI internal combustion engine will not be considered out of compliance.

(2) If you do not operate and maintain the certified stationary SI internal combustion engine and control device according to the manufacturer's emission-related written instructions, your engine will be considered a non-certified engine, and you must demonstrate compliance according to (a)(2)(i) through (iii) of this section, as appropriate.

(i) If you are an owner or operator of a stationary SI internal combustion engine less than 100 HP, you must keep a maintenance plan and records of conducted maintenance to demonstrate compliance and must, to the extent practicable, maintain and operate the engine in a manner consistent with good air pollution control practice for minimizing emissions, but no performance testing is required if you are an owner or operator.

(ii) If you are an owner or operator of a stationary SI internal combustion engine greater than or equal to 100 HP and less than or equal to 500 HP, you must keep a maintenance plan and records of conducted maintenance to demonstrate compliance and must, to the extent practicable, maintain and operate the engine in a manner consistent with good air pollution control practice for minimizing emissions. In addition, you must conduct an initial performance test within 1 year of engine startup to demonstrate compliance.

(iii) If you are an owner or operator of a stationary SI internal combustion engine greater than 500 HP, you must keep a maintenance plan and records of conducted maintenance and must, to the extent practicable, maintain and operate the engine in a manner consistent with good air pollution control practice for minimizing emissions. In addition, you must conduct an initial performance test within 1 year of engine startup and conduct subsequent performance testing every 8,760 hours or 3 years, whichever comes first, thereafter to demonstrate compliance.

(b) If you are an owner or operator of a stationary SI internal combustion engine and must comply with the emission standards specified in §60.4233(d) or (e), you must demonstrate compliance according to one of the methods specified in paragraphs (b)(1) and (2) of this section.

(1) Purchasing an engine certified according to procedures specified in this subpart, for the same model year and demonstrating compliance according to one of the methods specified in paragraph (a) of this section.

(2) Purchasing a non-certified engine and demonstrating compliance with the emission standards specified in §60.4233(d) or (e) and according to the requirements specified in §60.4244, as applicable, and according to paragraphs (b)(2)(i) and (ii) of this section.
(i) If you are an owner or operator of a stationary SI internal combustion engine greater than 25 HP and less than or equal to 500 HP, you must keep a maintenance plan and records of conducted maintenance and must, to the extent practicable, maintain and operate the engine in a manner consistent with good air pollution control practice for minimizing emissions. In addition, you must conduct an initial performance test to demonstrate compliance.

(ii) If you are an owner or operator of a stationary SI internal combustion engine greater than 500 HP, you must keep a maintenance plan and records of conducted maintenance and must, to the extent practicable, maintain and operate the engine in a manner consistent with good air pollution control practice for minimizing emissions. In addition, you must conduct an initial performance test and conduct subsequent performance testing every 8,760 hours or 3 years, whichever comes first, thereafter to demonstrate compliance.

(c) If you are an owner or operator of a stationary SI internal combustion engine that must comply with the emission standards specified in §60.4233(f), you must demonstrate compliance according paragraph (b)(2)(i) or (ii) of this section, except that if you comply according to paragraph (b)(2)(i) of this section, you demonstrate that your non-certified engine complies with the emission standards specified in §60.4233(f).

(d) If you own or operate an emergency stationary ICE, you must operate the emergency stationary ICE according to the requirements in paragraphs (d)(1) through (3) of this section. In order for the engine to be considered an emergency stationary ICE under this subpart, any operation other than emergency operation, maintenance and testing, emergency demand response, and operation in non-emergency situations for 50 hours per year, as described in paragraphs (d)(1) through (3) of this section, is prohibited. If you do not operate the engine according to the requirements in paragraphs (d)(1) through (3) of this section, the engine will not be considered an emergency engine under this subpart and must meet all requirements for non-emergency engines.

(1) There is no time limit on the use of emergency stationary ICE in emergency situations.

(2) You may operate your emergency stationary ICE for any combination of the purposes specified in paragraphs (d)(2)(i) through (iii) of this section for a maximum of 100 hours per calendar year. Any operation for non-emergency situations as allowed by paragraph (d)(3) of this section counts as part of the 100 hours per calendar year allowed by this paragraph (d)(2).

(i) Emergency stationary ICE may be operated for maintenance checks and readiness testing, provided that the tests are recommended by federal, state or local government, the manufacturer, the vendor, the regional transmission organization or equivalent balancing authority and transmission operator, or the insurance company associated with the engine. The owner or operator may petition the Administrator for approval of additional hours to be used for maintenance checks and readiness testing, but a petition is not required if the owner or operator maintains records indicating that federal, state, or local standards require maintenance and testing of emergency ICE beyond 100 hours per calendar year.

(ii) Emergency stationary ICE may be operated for emergency demand response for periods in which the Reliability Coordinator under the North American Electric Reliability Corporation (NERC) Reliability Standard EOP-002-3, Capacity and Energy Emergencies (incorporated by reference, see §60.17), or other authorized entity as determined by the Reliability Coordinator, has declared an Energy Emergency Alert Level 2 as defined in the NERC Reliability Standard EOP-002-3.

(iii) Emergency stationary ICE may be operated for periods where there is a deviation of voltage or frequency of 5 percent or greater below standard voltage or frequency.

(3) Emergency stationary ICE may be operated for up to 50 hours per calendar year in non-emergency situations. The 50 hours of operation in non-emergency situations are counted as part of the 100 hours per calendar year for maintenance and testing and emergency demand response provided in paragraph (d)(2) of this section. Except as provided in paragraph (d)(3)(i) of this section, the 50 hours per year for non-emergency situations cannot be used for peak shaving or non-emergency demand response, or to generate income for a facility to an electric grid or otherwise supply power as part of a financial arrangement with another entity.

(i) The 50 hours per year for non-emergency situations can be used to supply power as part of a financial arrangement with another entity if all of the following conditions are met:

(A) The engine is dispatched by the local balancing authority or local transmission and distribution system operator;

(B) The dispatch is intended to mitigate local transmission and/or distribution limitations so as to avert potential voltage collapse or line overloads that could lead to the interruption of power supply in a local area or region.

(C) The dispatch follows reliability, emergency operation or similar protocols that follow specific NERC, regional, state, public utility commission or local standards or guidelines.

(D) The power is provided only to the facility itself or to support the local transmission and distribution system.
The owner or operator identifies and records the entity that dispatches the engine and the specific NERC, regional, state, public utility commission or local standards or guidelines that are being followed for dispatching the engine. The local balancing authority or local transmission and distribution system operator may keep these records on behalf of the engine owner or operator.

(ii) [Reserved]

(e) Owners and operators of stationary SI natural gas fired engines may operate their engines using propane for a maximum of 100 hours per year as an alternative fuel solely during emergency operations, but must keep records of such use. If propane is used for more than 100 hours per year in an engine that is not certified to the emission standards when using propane, the owners and operators are required to conduct a performance test to demonstrate compliance with the emission standards of §60.4233.

(f) If you are an owner or operator of a stationary SI internal combustion engine that is less than or equal to 500 HP and you purchase a non-certified engine or you do not operate and maintain your certified stationary SI internal combustion engine and control device according to the manufacturer's written emission-related instructions, you are required to perform initial performance testing as indicated in this section, but you are not required to conduct subsequent performance testing unless the stationary engine is rebuilt or undergoes major repair or maintenance. A rebuilt stationary SI ICE means an engine that has been rebuilt as that term is defined in 40 CFR 94.11(a).

(g) It is expected that air-to-fuel ratio controllers will be used with the operation of three-way catalysts/non-selective catalytic reduction. The AFR controller must be maintained and operated appropriately in order to ensure proper operation of the engine and control device to minimize emissions at all times.

(h) If you are an owner/operator of an stationary SI internal combustion engine with maximum engine power greater than or equal to 500 HP that is manufactured after July 1, 2007 and before July 1, 2008, and must comply with the emission standards specified in sections 60.4233(b) or (c), you must comply by one of the methods specified in paragraphs (h)(1) through (h)(4) of this section.

1. Purchasing an engine certified according to 40 CFR part 1048. The engine must be installed and configured according to the manufacturer's specifications.

2. Keeping records of performance test results for each pollutant for a test conducted on a similar engine. The test must have been conducted using the same methods specified in this subpart and these methods must have been followed correctly.

3. Keeping records of engine manufacturer data indicating compliance with the standards.

4. Keeping records of control device vendor data indicating compliance with the standards.

(i) If you are an owner or operator of a modified or reconstructed stationary SI internal combustion engine and must comply with the emission standards specified in §60.4233(f), you must demonstrate compliance according to one of the methods specified in paragraphs (i)(1) or (2) of this section.

1. Purchasing, or otherwise owning or operating, an engine certified to the emission standards in §60.4233(f), as applicable.

2. Conducting a performance test to demonstrate initial compliance with the emission standards according to the requirements specified in §60.4244. The test must be conducted within 60 days after the engine commences operation after the modification or reconstruction.

(b) You may not conduct performance tests during periods of startup, shutdown, or malfunction, as specified in §60.8(c). If your stationary SI internal combustion engine is non-operational, you do not need to startup the engine solely to conduct a performance test; however, you must conduct the performance test immediately upon startup of the engine.

(c) You must conduct three separate test runs for each performance test required in this section, as specified in §60.8(f). Each test run must be conducted within 10 percent of 100 percent peak (or the highest achievable) load and last at least 1 hour.

(d) To determine compliance with the NOX mass per unit output emission limitation, convert the concentration of NOX in the engine exhaust using Equation 1 of this section:

\[
ER = \frac{C_d \cdot Q \cdot T}{10^{3}}
\]

Where:

\[ER\] = Emission rate of NOX in g/HP-hr.
\[C_d\] = Measured NOX concentration in parts per million by volume (ppmv).
\[1.912 \times 10^{-3}\] = Conversion constant for ppm NOX to grams per standard cubic meter at 20 degrees Celsius.
\[Q\] = Stack gas volumetric flow rate, in standard cubic meter per hour, dry basis.
\[T\] = Time of test run, in hours.
\[HP-hr\] = Brake work of the engine, horsepower-hour (HP-hr).

(e) To determine compliance with the CO mass per unit output emission limitation, convert the concentration of CO in the engine exhaust using Equation 2 of this section:

\[
ER = \frac{C_d \cdot Q \cdot T}{10^{3}}
\]

Where:

\[ER\] = Emission rate of CO in g/HP-hr.
\[C_d\] = Measured CO concentration in ppmv.
\[1.164 \times 10^{-3}\] = Conversion constant for ppm CO to grams per standard cubic meter at 20 degrees Celsius.
\[Q\] = Stack gas volumetric flow rate, in standard cubic meters per hour, dry basis.
\[T\] = Time of test run, in hours.
\[HP-hr\] = Brake work of the engine, in HP-hr.

(f) For purposes of this subpart, when calculating emissions of VOC, emissions of formaldehyde should not be included. To determine compliance with the VOC mass per unit output emission limitation, convert the concentration of VOC in the engine exhaust using Equation 3 of this section:

\[
ER = \frac{C_d \cdot Q \cdot T}{10^{3}}
\]

Where:

\[ER\] = Emission rate of VOC in g/HP-hr.
\[C_d\] = VOC concentration measured as propane in ppmv.
\[1.833 \times 10^{-3}\] = Conversion constant for ppm VOC measured as propane, to grams per standard cubic meter at 20 degrees Celsius.
\[Q\] = Stack gas volumetric flow rate, in standard cubic meters per hour, dry basis.
\[T\] = Time of test run, in hours.
\[HP-hr\] = Brake work of the engine, in HP-hr.

(g) If the owner/operator chooses to measure VOC emissions using either Method 18 of 40 CFR part 60, appendix A, or Method 320 of 40 CFR part 63, appendix A, then it has the option of correcting the measured VOC emissions to account for the
potential differences in measured values between these methods and Method 25A. The results from Method 18 and Method 320 can be corrected for response factor differences using Equations 4 and 5 of this section. The corrected VOC concentration can then be placed on a propane basis using Equation 6 of this section.

View or download PDF

Where:

\[
RF_i = \text{Response factor of compound } i \text{ when measured with EPA Method 25A.}
\]

\[
C_{i,\text{meas}} = \text{Measured concentration of compound } i \text{ in ppmv as carbon.}
\]

\[
C_{i,\text{corr}} = \text{Concentration of compound } i \text{ corrected to the value that would have been measured by EPA Method 25A, ppmv as carbon.}
\]

\[
C_{\text{Peq}} = 0.6093 \times C_{i,\text{corr}} \quad \text{(Eq. 6)}
\]

View or download PDF

Where:

\[
C_{\text{Peq}} = \text{Concentration of compound } i \text{ in mg of propane equivalent per DSCM.}
\]

NOTIFICATION, REPORTS, AND RECORDS FOR OWNERS AND OPERATORS

§60.4245 What are my notification, reporting, and recordkeeping requirements if I am an owner or operator of a stationary SI internal combustion engine?

Owners or operators of stationary SI ICE must meet the following notification, reporting and recordkeeping requirements.

(a) Owners and operators of all stationary SI ICE must keep records of the information in paragraphs (a)(1) through (4) of this section.

(1) All notifications submitted to comply with this subpart and all documentation supporting any notification.

(2) Maintenance conducted on the engine.

(3) If the stationary SI internal combustion engine is a certified engine, documentation from the manufacturer that the engine is certified to meet the emission standards and information as required in 40 CFR parts 90, 1048, 1054, and 1060, as applicable.

(4) If the stationary SI internal combustion engine is not a certified engine or is a certified engine operating in a non-certified manner and subject to §60.4243(a)(2), documentation that the engine meets the emission standards.

(b) For all stationary SI emergency ICE greater than or equal to 500 HP manufactured on or after July 1, 2010, that do not meet the standards applicable to non-emergency engines, the owner or operator of must keep records of the hours of operation of the engine that is recorded through the non-resettable hour meter. For all stationary SI emergency ICE greater than or equal to 130 HP and less than 500 HP manufactured on or after July 1, 2011 that do not meet the standards applicable to non-emergency engines, the owner or operator of must keep records of the hours of operation of the engine that is recorded through the non-resettable hour meter. For all stationary SI emergency ICE greater than 25 HP and less than 130 HP manufactured on or after July 1, 2008, that do not meet the standards applicable to non-emergency engines, the owner or operator of must keep records of the hours of operation of the engine that is recorded through the non-resettable hour meter. The owner or operator must document how many hours are spent for emergency operation, including what classified the operation as emergency and how many hours are spent for non-emergency operation.
(c) Owners and operators of stationary SI ICE greater than or equal to 500 HP that have not been certified by an engine manufacturer to meet the emission standards in §60.4231 must submit an initial notification as required in §60.7(a)(1). The notification must include the information in paragraphs (c)(1) through (5) of this section.

(1) Name and address of the owner or operator;

(2) The address of the affected source;

(3) Engine information including make, model, engine family, serial number, model year, maximum engine power, and engine displacement;

(4) Emission control equipment; and

(5) Fuel used.

(d) Owners and operators of stationary SI ICE that are subject to performance testing must submit a copy of each performance test as conducted in §60.4244 within 60 days after the test has been completed. Performance test reports using EPA Method 18, EPA Method 320, or ASTM D6348-03 (incorporated by reference—see 40 CFR 60.17) to measure VOC require reporting of all QA/QC data. For Method 18, report results from sections 8.4 and 11.1.1.4; for Method 320, report results from sections 8.6.2, 9.0, and 13.0; and for ASTM D6348-03 report results of all QA/QC procedures in Annexes 1-7.

(e) If you own or operate an emergency stationary SI ICE with a maximum engine power more than 100 HP that operates or is contractually obligated to be available for more than 15 hours per calendar year for the purposes specified in §60.4243(d)(2)(ii) and (iii) or that operates for the purposes specified in §60.4243(d)(3)(i), you must submit an annual report according to the requirements in paragraphs (e)(1) through (3) of this section.

(1) The report must contain the following information:

(i) Company name and address where the engine is located.

(ii) Date of the report and beginning and ending dates of the reporting period.

(iii) Engine site rating and model year.

(iv) Latitude and longitude of the engine in decimal degrees reported to the fifth decimal place.

(v) Hours operated for the purposes specified in §60.4243(d)(2)(ii) and (iii), including the date, start time, and end time for engine operation for the purposes specified in §60.4243(d)(2)(ii) and (iii).

(vi) Number of hours the engine is contractually obligated to be available for the purposes specified in §60.4243(d)(2)(ii) and (iii).

(vii) Hours spent for operation for the purposes specified in §60.4243(d)(3)(i), including the date, start time, and end time for engine operation for the purposes specified in §60.4243(d)(3)(i). The report must also identify the entity that dispatched the engine and the situation that necessitated the dispatch of the engine.

(2) The first annual report must cover the calendar year 2015 and must be submitted no later than March 31, 2016. Subsequent annual reports for each calendar year must be submitted no later than March 31 of the following calendar year.

(3) The annual report must be submitted electronically using the subpart specific reporting form in the Compliance and Emissions Data Reporting Interface (CEDRI) that is accessed through EPA's Central Data Exchange (CDX) (www.epa.gov/cdx). However, if the reporting form specific to this subpart is not available in CEDRI at the time that the report is due, the written report must be submitted to the Administrator at the appropriate address listed in §60.4.

§60.4247 What parts of the mobile source provisions apply to me if I am a manufacturer of stationary SI internal combustion engines or a manufacturer of equipment containing such engines?

(a) Manufacturers certifying to emission standards in 40 CFR part 90, including manufacturers certifying emergency engines below 130 HP, must meet the provisions of 40 CFR part 90. Manufacturers certifying to emission standards in 40 CFR part 1054 must meet the provisions of 40 CFR part 1054. Manufacturers of equipment containing stationary SI internal combustion engines meeting the provisions of 40 CFR part 1054 must meet the provisions of 40 CFR part 1060 to the extent they apply to equipment manufacturers.

(b) Manufacturers required to certify to emission standards in 40 CFR part 1048 must meet the provisions of 40 CFR part 1048. Manufacturers certifying to emission standards in 40 CFR part 1048 pursuant to the voluntary certification program must meet the requirements in Table 4 to this subpart as well as the standards in 40 CFR 1048.101.

(c) For manufacturers of stationary SI internal combustion engines participating in the voluntary certification program and certifying engines to Table 1 to this subpart, Table 4 to this subpart shows which parts of the mobile source provisions in 40 CFR parts 1048, 1065, and 1068 apply to you. Compliance with the deterioration factor provisions under 40 CFR 1048.205(n) and 1048.240 will be required for engines built new on and after January 1, 2010. Prior to January 1, 2010, manufacturers of stationary internal combustion engines participating in the voluntary certification program have the option to develop their own deterioration factors based on an engineering analysis.

[73 FR 3591, Jan. 18, 2008, as amended at 73 FR 59177, Oct. 8, 2008]

§60.4248 What definitions apply to this subpart?

As used in this subpart, all terms not defined herein shall have the meaning given them in the CAA and in subpart A of this part.

Certified emissions life means the period during which the engine is designed to properly function in terms of reliability and fuel consumption, without being remanufactured, specified as a number of hours of operation or calendar years, whichever comes first. The values for certified emissions life for stationary SI ICE with a maximum engine power less than or equal to 19 KW (25 HP) are given in 40 CFR 90.105, 40 CFR 1054.107, and 40 CFR 1060.101, as appropriate. The values for certified emissions life for stationary SI ICE with a maximum engine power greater than 19 KW (25 HP) certified to 40 CFR part 1048 are given in 40 CFR 1048.101(g). The certified emissions life for stationary SI ICE with a maximum engine power greater than 75 KW (100 HP) certified under the voluntary manufacturer certification program of this subpart is 5,000 hours or 7 years, whichever comes first. You may request in your application for certification that we approve a shorter certified emissions life for an engine family. We may approve a shorter certified emissions life, in hours of engine operation but not in years, if we determine that these engines will rarely operate longer than the shorter certified emissions life. If engines identical to those in the engine family have already been produced and are in use, your demonstration must include documentation from such in-use engines. In other cases, your demonstration must include an engineering analysis of information equivalent to such in-use data, such as data from research engines or similar engine models that are already in production. Your demonstration must also include any overhaul interval that you recommend, any mechanical warranty that you offer for the engine or its components, and any relevant customer design specifications. Your demonstration may include any other relevant information. The certified emissions life value may not be shorter than any of the following:

(i) 1,000 hours of operation.

(ii) Your recommended overhaul interval.

(iii) Your mechanical warranty for the engine.

Certified stationary internal combustion engine means an engine that belongs to an engine family that has a certificate of conformity that complies with the emission standards and requirements in this part, or of 40 CFR part 90, 40 CFR part 1048, or 40 CFR part 1054, as appropriate.
Combustion turbine means all equipment, including but not limited to the turbine, the fuel, air, lubrication and exhaust gas systems, control systems (except emissions control equipment), and any ancillary components and sub-components comprising any simple cycle combustion turbine, any regenerative/recuperative cycle combustion turbine, the combustion turbine portion of any cogeneration cycle combustion system, or the combustion turbine portion of any combined cycle steam/electric generating system.

Compression ignition means relating to a type of stationary internal combustion engine that is not a spark ignition engine.

Date of manufacture means one of the following things:

(1) For freshly manufactured engines and modified engines, date of manufacture means the date the engine is originally produced.

(2) For reconstructed engines, date of manufacture means the date the engine was originally produced, except as specified in paragraph (3) of this definition.

(3) Reconstructed engines are assigned a new date of manufacture if the fixed capital cost of the new and refurbished components exceeds 75 percent of the fixed capital cost of a comparable entirely new facility. An engine that is produced from a previously used engine block does not retain the date of manufacture of the engine in which the engine block was previously used if the engine is produced using all new components except for the engine block. In these cases, the date of manufacture is the date of reconstruction or the date the new engine is produced.

Diesel fuel means any liquid obtained from the distillation of petroleum with a boiling point of approximately 150 to 360 degrees Celsius. One commonly used form is number 2 distillate oil.

Digester gas means any gaseous by-product of wastewater treatment typically formed through the anaerobic decomposition of organic waste materials and composed principally of methane and carbon dioxide (CO$_2$).

Emergency stationary internal combustion engine means any stationary reciprocating internal combustion engine that meets all of the criteria in paragraphs (1) through (3) of this definition. All emergency stationary ICE must comply with the requirements specified in §60.4243(d) in order to be considered emergency stationary ICE. If the engine does not comply with the requirements specified in §60.4243(d), then it is not considered to be an emergency stationary ICE under this subpart.

(1) The stationary ICE is operated to provide electrical power or mechanical work during an emergency situation. Examples include stationary ICE used to produce power for critical networks or equipment (including power supplied to portions of a facility) when electric power from the local utility (or the normal power source, if the facility runs on its own power production) is interrupted, or stationary ICE used to pump water in the case of fire or flood, etc.

(2) The stationary ICE is operated under limited circumstances for situations not included in paragraph (1) of this definition, as specified in §60.4243(d).

(3) The stationary ICE operates as part of a financial arrangement with another entity in situations not included in paragraph (1) of this definition only as allowed in §60.4243(d)(2)(ii) or (iii) and §60.4243(d)(3)(i).

Engine manufacturer means the manufacturer of the engine. See the definition of "manufacturer" in this section.

Four-stroke engine means any type of engine which completes the power cycle in two crankshaft revolutions, with intake and compression strokes in the first revolution and power and exhaust strokes in the second revolution.

Freshly manufactured engine means an engine that has not been placed into service. An engine becomes freshly manufactured when it is originally produced.

Gasoline means any fuel sold in any State for use in motor vehicles and motor vehicle engines, or nonroad or stationary engines, and commonly or commercially known or sold as gasoline.

Installed means the engine is placed and secured at the location where it is intended to be operated.

Landfill gas means a gaseous by-product of the land application of municipal refuse typically formed through the anaerobic decomposition of waste materials and composed principally of methane and CO$_2$.

Lean burn engine means any two-stroke or four-stroke spark ignited engine that does not meet the definition of a rich burn engine.

Liquefied petroleum gas means any liquefied hydrocarbon gas obtained as a by-product in petroleum refining or natural gas production.
Manufacturer has the meaning given in section 216(1) of the Clean Air Act. In general, this term includes any person who manufactures a stationary engine for sale in the United States or otherwise introduces a new stationary engine into commerce in the United States. This includes importers who import stationary engines for resale.

Maximum engine power means maximum engine power as defined in 40 CFR 1048.801.

Model year means the calendar year in which an engine is manufactured (see "date of manufacture"), except as follows:

(1) Model year means the annual new model production period of the engine manufacturer in which an engine is manufactured (see "date of manufacture"), if the annual new model production period is different than the calendar year and includes January 1 of the calendar year for which the model year is named. It may not begin before January 2 of the previous calendar year and it must end by December 31 of the named calendar year.

(2) For an engine that is converted to a stationary engine after being placed into service as a nonroad or other non-stationary engine, model year means the calendar year or new model production period in which the engine was manufactured (see "date of manufacture").

Natural gas means a naturally occurring mixture of hydrocarbon and non-hydrocarbon gases found in geologic formations beneath the Earth's surface, of which the principal constituent is methane. Natural gas may be field or pipeline quality.

Other internal combustion engine means any internal combustion engine, except combustion turbines, which is not a reciprocating internal combustion engine or rotary internal combustion engine.

Pipeline-quality natural gas means a naturally occurring fluid mixture of hydrocarbons (e.g., methane, ethane, or propane) produced in geological formations beneath the Earth's surface that maintains a gaseous state at standard atmospheric temperature and pressure under ordinary conditions, and which is provided by a supplier through a pipeline. Pipeline-quality natural gas must either be composed of at least 70 percent methane by volume or have a gross calorific value between 950 and 1,100 British thermal units per standard cubic foot.

Rich burn engine means any four-stroke spark ignited engine where the manufacturer's recommended operating air/fuel ratio divided by the stoichiometric air/fuel ratio at full load conditions is less than or equal to 1.1. Engines originally manufactured as rich burn engines, but modified prior to June 12, 2006, with passive emission control technology for NO\textsubscript{X} (such as pre-combustion chambers) will be considered lean burn engines. Also, existing engines where there are no manufacturer's recommendations regarding air/fuel ratio will be considered a rich burn engine if the excess oxygen content of the exhaust at full load conditions is less than or equal to 2 percent.

Rotary internal combustion engine means any internal combustion engine which uses rotary motion to convert heat energy into mechanical work.

Spark ignition means relating to either: a gasoline-fueled engine; or any other type of engine with a spark plug (or other sparking device) and with operating characteristics significantly similar to the theoretical Otto combustion cycle. Spark ignition engines usually use a throttle to regulate intake air flow to control power during normal operation. Dual-fuel engines in which a liquid fuel (typically diesel fuel) is used for compression ignition and gaseous fuel (typically natural gas) is used as the primary fuel at an annual average ratio of less than 2 parts diesel fuel to 100 parts total fuel on an energy equivalent basis are spark ignition engines.

Stationary internal combustion engine means any internal combustion engine, except combustion turbines, that converts heat energy into mechanical work and is not mobile. Stationary ICE differ from mobile ICE in that a stationary internal combustion engine is not a nonroad engine as defined at 40 CFR 1068.30 (excluding paragraph (2)(ii) of that definition), and is not used to propel a motor vehicle, aircraft, or a vehicle used solely for competition. Stationary ICE include reciprocating ICE, rotary ICE, and other ICE, except combustion turbines.

Stationary internal combustion engine test cell/stand means an engine test cell/stand, as defined in 40 CFR part 63, subpart PPPPP, that tests stationary ICE.

Stoichiometric means the theoretical air-to-fuel ratio required for complete combustion.

Subpart means 40 CFR part 60, subpart JJJJ.

Two-stroke engine means a type of engine which completes the power cycle in single crankshaft revolution by combining the intake and compression operations into one stroke and the power and exhaust operations into a second stroke. This system requires auxiliary scavenging and inherently runs lean of stoichiometric.

Volatile organic compounds means volatile organic compounds as defined in 40 CFR 51.100(s).
Voluntary certification program means an optional engine certification program that manufacturers of stationary SI internal combustion engines with a maximum engine power greater than 19 KW (25 HP) that do not use gasoline and are not rich burn engines that use LPG can choose to participate in to certify their engines to the emission standards in §60.4231(d) or (e), as applicable.

Table 1 to Subpart JJJJ of Part 60—NO\textsubscript{X}, CO, and VOC Emission Standards for Stationary Non-Emergency SI Engines ≥100 HP (Except Gasoline and Rich Burn LPG), Stationary SI Landfill/Digester Gas Engines, and Stationary Emergency Engines >25 HP

<table>
<thead>
<tr>
<th>Engine type and fuel</th>
<th>Maximum engine power</th>
<th>Manufacture date</th>
<th>NO\textsubscript{X} ppmvd at 15% O\textsubscript{2}</th>
<th>CO ppmvd at 15% O\textsubscript{2}</th>
<th>VOC ppmvd at 15% O\textsubscript{2}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-Emergency SI Natural Gasb and Non-Emergency SI Lean Burn LPGb</td>
<td>HP≥500</td>
<td>7/1/2007</td>
<td>2.0</td>
<td>0.7</td>
<td>1.0</td>
</tr>
<tr>
<td>HP≥500</td>
<td>7/1/2010</td>
<td>2.0</td>
<td>0.7</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>Non-Emergency SI Lean Burn Natural Gas and LPG</td>
<td>HP≥500</td>
<td>7/1/2008</td>
<td>2.0</td>
<td>0.7</td>
<td>1.0</td>
</tr>
<tr>
<td>HP≥500</td>
<td>7/1/2010</td>
<td>2.0</td>
<td>0.7</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>Non-Emergency SI Natural Gas and Non-Emergency SI Lean Burn LPG (except lean burn 500≤HP<1,350)</td>
<td>HP≥500</td>
<td>7/1/2007</td>
<td>2.0</td>
<td>0.7</td>
<td>1.0</td>
</tr>
<tr>
<td>HP≥500</td>
<td>7/1/2010</td>
<td>2.0</td>
<td>0.7</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>Landfill/Digester Gas (except lean burn 500≤HP<1,350)</td>
<td>HP≥500</td>
<td>7/1/2008</td>
<td>3.0</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>HP≥500</td>
<td>7/1/2011</td>
<td>3.0</td>
<td>1.0</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>Landfill/Digester Gas Lean Burn</td>
<td>HP≥500</td>
<td>7/1/2008</td>
<td>4.0</td>
<td>2.0</td>
<td>1.0</td>
</tr>
<tr>
<td>HP≥500</td>
<td>7/1/2010</td>
<td>4.0</td>
<td>2.0</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>Emergency</td>
<td>HP≥130</td>
<td>1/1/2009</td>
<td>10</td>
<td>387</td>
<td>N/A</td>
</tr>
<tr>
<td>HP≥130</td>
<td>1/1/2009</td>
<td>2.0</td>
<td>1.0</td>
<td>1.0</td>
<td></td>
</tr>
</tbody>
</table>

aOwners and operators of stationary non-certified SI engines may choose to comply with the emission standards in units of either g/HP-hr or ppmvd at 15 percent O\textsubscript{2}.

bOwners and operators of new or reconstructed non-emergency lean burn SI stationary engines with a site rating of greater than or equal to 250 brake HP located at a major source that are meeting the requirements of 40 CFR part 63, subpart ZZZZ, Table 2a do not have to comply with the CO emission standards of Table 1 of this subpart.

cThe emission standards applicable to emergency engines between 25 HP and 130 HP are in terms of NO\textsubscript{X} + HC.

dFor purposes of this subpart, when calculating emissions of volatile organic compounds, emissions of formaldehyde should not be included.

[76 FR 37975, June 28, 2011]

Table 2 to Subpart JJJJ of Part 60—Requirements for Performance Tests

[As stated in §60.4244, you must comply with the following requirements for performance tests within 10 percent of 100 percent peak (or the highest achievable) load]
<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>iii. If necessary, determine the exhaust flow rate of the stationary internal combustion engine exhaust;</td>
<td>(3) Method 2 or 2C of 40 CFR part 60, appendix A-1, or Method 19 of 40 CFR part 60, appendix A-7</td>
</tr>
<tr>
<td>iv. If necessary, measure moisture content of the stationary internal combustion engine exhaust at the sampling port location; and</td>
<td>(4) Method 4 of 40 CFR part 60, appendix A-3, Method 320 of 40 CFR part 63, appendix A", or ASTM Method D6348-03d e</td>
</tr>
<tr>
<td>v. Measure NOX at the exhaust of the stationary internal combustion engine; if using a control device, the sampling site must be located at the outlet of the control device</td>
<td>(5) Method 7E of 40 CFR part 60, appendix A-4, ASTM Method D6522-00 (Reapproved 2005)a d Method 320 of 40 CFR part 63, appendix A", or ASTM Method D6348-03d e</td>
</tr>
<tr>
<td></td>
<td>(d) Results of this test consist of the average of the three 1-hour or longer runs.</td>
</tr>
<tr>
<td>(c) Measurements to determine moisture must be made at the same time as the measurement for NOX concentration.</td>
<td></td>
</tr>
<tr>
<td>b. Limit the concentration of CO in the stationary SI internal combustion engine exhaust</td>
<td>(a) Alternatively, for CO, O2, and moisture measurement,ducts 56 inches in diameter may be sampled at a single point located at the duct centroid and ducts >6 and ≤12 inches in diameter may be sampled at 3 traverse points located at 16.7, 50.0, and 83.3% of the measurement line (‘3-point long line’). If the duct is >12 inches in diameter and the sampling port location meets the two and half-diameter criterion of Section 11.1.1 of Method 1 of 40 CFR part 60, Appendix A, the duct may be sampled at ‘3-point long line’; otherwise, conduct the stratification testing and select sampling points according to Section 8.1.2 of Method 7E of 40 CFR part 60, Appendix A.</td>
</tr>
<tr>
<td>i. Select the sampling port location and the number/location of traverse points at the exhaust of the stationary internal combustion engine;</td>
<td>(1) Method 1 or 1A of 40 CFR part 60, appendix A-1, if measuring flow rate</td>
</tr>
<tr>
<td>ii. Determine the O2 concentration of the stationary internal combustion engine exhaust at the sampling port location; and</td>
<td>(2) Method 3, 3A, or 3B of 40 CFR part 60, appendix A-2 or ASTM Method D6522-00 (Reapproved 2005)a d</td>
</tr>
<tr>
<td>(b) Measurements to determine O2 concentration must be made at the same time as the measurements for CO concentration.</td>
<td></td>
</tr>
<tr>
<td>iii. If necessary, determine the exhaust flow rate of the stationary internal combustion engine exhaust;</td>
<td>(3) Method 2 or 2C of 40 CFR part 60, appendix A-1 or Method 19 of 40 CFR part 60, appendix A-7</td>
</tr>
<tr>
<td>iv. If necessary, measure moisture content of the stationary internal combustion engine exhaust at the sampling port location; and</td>
<td>(4) Method 4 of 40 CFR part 60, appendix A-3, Method 320 of 40 CFR part 63, appendix A", or ASTM Method D6348-03d e</td>
</tr>
<tr>
<td>v. Measure CO at the exhaust of the stationary internal combustion engine; if using a control device, the sampling site must be located at the outlet of the control device</td>
<td>(5) Method 10 of 40 CFR part 60, appendix A4, ASTM Method D6522-00 (Reapproved 2005)a d Method 320 of 40 CFR part 63, appendix A", or ASTM Method D6348-03d e</td>
</tr>
<tr>
<td>(d) Results of this test consist of the average of the three 1-hour or longer runs.</td>
<td></td>
</tr>
<tr>
<td>(c) Measurements to determine moisture must be made at the same time as the measurement for CO concentration.</td>
<td></td>
</tr>
<tr>
<td>c. Limit the concentration of VOC in the stationary SI internal combustion engine exhaust</td>
<td>(a) Alternatively, for VOC, O2, and moisture measurement, ducts 56 inches in diameter may be sampled at a single point located at the duct centroid and ducts >6 and ≤12 inches in diameter may be sampled at 3 traverse points located at 16.7, 50.0, and 83.3% of the measurement line (‘3-point long line’). If the duct is >12 inches in diameter and the sampling port location meets the two and half-diameter criterion of Section 11.1.1 of Method 1 of 40 CFR part 60, Appendix A, the duct may be sampled at ‘3-point long line’; otherwise, conduct the stratification testing and select sampling points according to Section 8.1.2 of Method 7E of 40 CFR part 60, Appendix A.</td>
</tr>
<tr>
<td>i. Select the sampling port location and the number/location of traverse points at the exhaust of the stationary internal combustion engine;</td>
<td>(1) Method 1 or 1A of 40 CFR part 60, appendix A-1, if measuring flow rate</td>
</tr>
<tr>
<td>ii. Determine the O2 concentration of the stationary internal combustion engine exhaust at the sampling port location; and</td>
<td>(2) Method 3, 3A, or 3B of 40 CFR part 60, appendix A-2 or ASTM Method D6522-00 (Reapproved 2005)a d</td>
</tr>
<tr>
<td>(b) Measurements to determine O2 concentration must be made at the same time as the measurements for VOC concentration.</td>
<td></td>
</tr>
<tr>
<td>iii. If necessary,</td>
<td>(3) Method 2 or 2C of 40 CFR part 60, appendix A-1, or Method 19 of 40 CFR part 60, appendix A-7</td>
</tr>
</tbody>
</table>
determine the exhaust flowrate of the stationary internal combustion engine exhaust; 60, appendix A-1 or Method 19 of 40 CFR part 60, appendix A-7

v. if necessary, measure moisture content of the stationary internal combustion engine exhaust at the sampling port location; and (4) Method 4 of 40 CFR part 60, appendix A-3, Method 320 of 40 CFR part 63, appendix A, or ASTM Method D6348-03

c) Measurements to determine moisture must be made at the same time as the measurement for VOC concentration.

v. Measure VOC at the exhaust of the stationary internal combustion engine; if using a control device, the sampling site must be located at the outlet of the control device (5) Methods 25A and 18 of 40 CFR part 60, appendices A-6 and A-7, Method 25A with the use of a hydrocarbon cutter as described in 40 CFR 1065.265, Method 18 of 40 CFR part 60, appendix A-6, Method 320 of 40 CFR part 63, appendix A, or ASTM Method D6348-03

d) Results of this test consist of the average of the three 1-hour or longer runs.

\[81 \text{ FR 59809, Aug. 30, 2016}\]

a Also, you may petition the Administrator for approval to use alternative methods for portable analyzer.

b You may use ASME PTC 19.10-1981, Flue and Exhaust Gas Analyses, for measuring the \(O_2\) content of the exhaust gas as an alternative to EPA Method 3B. AMSE PTC 19.10-1981 incorporated by reference, see 40 CFR 60.17

c You may use EPA Method 18 of 40 CFR part 60, appendix A-6, provided that you conduct an adequate pre-survey test prior to the emissions test, such as the one described in OTM 11 on EPA's Web site (http://www.epa.gov/ttn/emc/prelim/otm11.pdf).

d Incorporated by reference; see 40 CFR 60.17.

e You must meet the requirements in §60.4245(d).

Table 3 to Subpart JJJJ of Part 60—Applicability of General Provisions to Subpart JJJJ

<table>
<thead>
<tr>
<th>General provisions citation</th>
<th>Subject of citation</th>
<th>Applies to subpart</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>§60.1</td>
<td>General applicability of the General Provisions</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>§60.2</td>
<td>Definitions</td>
<td>Yes</td>
<td>Additional terms defined in §60.4248.</td>
</tr>
<tr>
<td>§60.3</td>
<td>Units and abbreviations</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>§60.4</td>
<td>Address</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>§60.5</td>
<td>Determination of construction or modification</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>§60.6</td>
<td>Review of plans</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>§60.7</td>
<td>Notification and Recordkeeping</td>
<td>Yes</td>
<td>Except that §60.7 only applies as specified in §60.4245.</td>
</tr>
<tr>
<td>§60.8</td>
<td>Performance tests</td>
<td>Yes</td>
<td>Except that §60.8 only applies to owners and operators who are subject to performance testing in subpart JJJJ.</td>
</tr>
<tr>
<td>§60.9</td>
<td>Availability of information</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>§60.10</td>
<td>State Authority</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>§60.11</td>
<td>Compliance with standards and maintenance requirements</td>
<td>Yes</td>
<td>Requirements are specified in subpart JJJJ.</td>
</tr>
<tr>
<td>§60.12</td>
<td>Circumvention</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>§60.13</td>
<td>Monitoring requirements</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>§60.14</td>
<td>Modification</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>§60.15</td>
<td>Reconstruction</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>§60.16</td>
<td>Priority list</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>§60.17</td>
<td>Incorporations by reference</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>§60.18</td>
<td>General control device requirements</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>§60.19</td>
<td>General notification and reporting requirements</td>
<td>Yes</td>
<td></td>
</tr>
</tbody>
</table>
Table 4 to Subpart JJJJ of Part 60—Applicability of Mobile Source Provisions for Manufacturers Participating in the Voluntary Certification Program and Certifying Stationary SI ICE to Emission Standards in Table 1 of Subpart JJJJ

[As stated in §60.4247, you must comply with the following applicable mobile source provisions if you are a manufacturer participating in the voluntary certification program and certifying stationary SI ICE to emission standards in Table 1 of subpart JJJJ]

<table>
<thead>
<tr>
<th>Mobile source provisions citation</th>
<th>Subject of citation</th>
<th>Applies to subpart</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1048 subpart A</td>
<td>Overview and Applicability</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>1048 subpart B</td>
<td>Emission Standards and Related Requirements</td>
<td>Yes</td>
<td>Except for the specific sections below.</td>
</tr>
<tr>
<td>1048.101</td>
<td>Exhaust Emission Standards</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>1048.105</td>
<td>Evaporative Emission Standards</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>1048.110</td>
<td>Diagnosing Malfunctions</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>1048.140</td>
<td>Certifying Blue Sky Series Engines</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>1048.145</td>
<td>Interim Provisions</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>1048 subpart C</td>
<td>Certifying Engine Families</td>
<td>Yes</td>
<td>Except for the specific sections below.</td>
</tr>
<tr>
<td>1048.205(b)</td>
<td>AECD reporting</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>1048.205(c)</td>
<td>OBD Requirements</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>1048.205(n)</td>
<td>Deterioration Factors</td>
<td>Yes</td>
<td>Except as indicated in 60.4247(c).</td>
</tr>
<tr>
<td>1048.205(p)(1)</td>
<td>Deterioration Factor Discussion</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>1048.205(p)(2)</td>
<td>Liquid Fuels as they require</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>1048.240(b)(c)(d)</td>
<td>Deterioration Factors</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>1048 subpart D</td>
<td>Testing Production-Line Engines</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>1048 subpart E</td>
<td>Testing In-Use Engines</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>1048 subpart F</td>
<td>Test Procedures</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>1065.5(a)(4)</td>
<td>Raw sampling (refers reader back to the specific emissions regulation for guidance)</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>1048 subpart G</td>
<td>Compliance Provisions</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>1048 subpart H</td>
<td>Reserved</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>1048 subpart I</td>
<td>Definitions and Other Reference Information</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>1048 appendix I and II</td>
<td>Yes</td>
<td>Yes</td>
<td>Except for the specific section below.</td>
</tr>
<tr>
<td>1065 (all subparts)</td>
<td>Engine Testing Procedures</td>
<td>Yes</td>
<td>Except for the specific section below.</td>
</tr>
<tr>
<td>1065.715</td>
<td>Test Fuel Specifications for Natural Gas</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>1068 (all subparts)</td>
<td>General Compliance Provisions for Nonroad Programs</td>
<td>Yes</td>
<td>Except for the specific sections below.</td>
</tr>
<tr>
<td>1068.245</td>
<td>Hardship Provisions for Unusual Circumstances</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>1068.250</td>
<td>Hardship Provisions for Small-Volume Manufacturers</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>1068.255</td>
<td>Hardship Provisions for Equipment Manufacturers and Secondary Engine Manufacturers</td>
<td>No</td>
<td></td>
</tr>
</tbody>
</table>
Appendix G
NESHAP Subpart CCCCC
§63.11110 What is the purpose of this subpart?

This subpart establishes national emission limitations and management practices for hazardous air pollutants (HAP) emitted from the loading of gasoline storage tanks at gasoline dispensing facilities (GDF). This subpart also establishes...
requirements to demonstrate compliance with the emission limitations and management practices.

§63.11111 Am I subject to the requirements in this subpart?

(a) The affected source to which this subpart applies is each GDF that is located at an area source. The affected source includes each gasoline cargo tank during the delivery of product to a GDF and also includes each storage tank.

(b) If your GDF has a monthly throughput of less than 10,000 gallons of gasoline, you must comply with the requirements in §63.11116.

(c) If your GDF has a monthly throughput of 10,000 gallons of gasoline or more, you must comply with the requirements in §63.11117.

(d) If your GDF has a monthly throughput of 100,000 gallons of gasoline or more, you must comply with the requirements in §63.11118.

(e) An affected source shall, upon request by the Administrator, demonstrate that their monthly throughput is less than the 10,000-gallon or the 100,000-gallon threshold level, as applicable. For new or reconstructed affected sources, as specified in §63.11112(b) and (c), recordkeeping to document monthly throughput must begin upon startup of the affected source. For existing sources, as specified in §63.11112(d), recordkeeping to document monthly throughput must begin on January 10, 2008. For existing sources that are subject to this subpart only because they load gasoline into fuel tanks other than those in motor vehicles, as defined in §63.11132, recordkeeping to document monthly throughput must begin on January 24, 2011. Records required under this paragraph shall be kept for a period of 5 years.

(f) If you are an owner or operator of affected sources, as defined in paragraph (a) of this section, you are not required to obtain a permit under 40 CFR part 70 or 40 CFR part 71 as a result of being subject to this subpart. However, you must still apply for and obtain a permit under 40 CFR part 70 or 40 CFR part 71 if you meet one or more of the applicability criteria found in 40 CFR 70.3(a) and (b) or 40 CFR 71.3(a) and (b).

(g) The loading of aviation gasoline into storage tanks at airports, and the subsequent transfer of aviation gasoline within the airport, is not subject to this subpart.

(h) Monthly throughput is the total volume of gasoline loaded into, or dispensed from, all the gasoline storage tanks located at a single affected GDF. If an area source has two or more GDF at separate locations within the area source, each GDF is treated as a separate affected source.

(i) If your affected source’s throughput ever exceeds an applicable throughput threshold, the affected source will remain subject to the requirements for sources above the threshold, even if the affected source throughput later falls below the applicable throughput threshold.

(j) The dispensing of gasoline from a fixed gasoline storage tank at a GDF into a portable gasoline tank for the on-site delivery and subsequent dispensing of the gasoline into the fuel tank of a motor vehicle or other gasoline-fueled engine or equipment used within the area source is only subject to §63.11116 of this subpart.

(k) For any affected source subject to the provisions of this subpart and another Federal rule, you may elect to comply only with the more stringent provisions of the applicable subparts. You must consider all provisions of the rules, including monitoring, recordkeeping, and reporting. You must identify the affected source and provisions with which you will comply in your Notification of Compliance Status required under §63.11124. You also must demonstrate in your Notification of Compliance Status that each provision with which you will comply is at least as stringent as the otherwise applicable requirements in this subpart. You are responsible for making accurate determinations concerning the more stringent provisions, and noncompliance with this rule is not excused if it is later determined that your determination was in error, and, as a result, you are violating this subpart. Compliance with this rule is your responsibility and the Notification of Compliance Status does not alter or affect that responsibility.

storage tanks at GDF are covered emission sources. The equipment used for the refueling of motor vehicles is not covered by this subpart.

(b) An affected source is a new affected source if you commenced construction on the affected source after November 9, 2006, and you meet the applicability criteria in §63.11111 at the time you commenced operation.

(c) An affected source is reconstructed if you meet the criteria for reconstruction as defined in §63.2.

(d) An affected source is an existing affected source if it is not new or reconstructed.

§63.11113 When do I have to comply with this subpart?

(a) If you have a new or reconstructed affected source, you must comply with this subpart according to paragraphs (a)(1) and (2) of this section, except as specified in paragraph (d) of this section.

(1) If you start up your affected source before January 10, 2008, you must comply with the standards in this subpart no later than January 10, 2008.

(2) If you start up your affected source after January 10, 2008, you must comply with the standards in this subpart upon startup of your affected source.

(b) If you have an existing affected source, you must comply with the standards in this subpart no later than January 10, 2011.

(c) If you have an existing affected source that becomes subject to the control requirements in this subpart because of an increase in the monthly throughput, as specified in §63.11111(c) or §63.11111(d), you must comply with the standards in this subpart no later than 3 years after the affected source becomes subject to the control requirements in this subpart.

(d) If you have a new or reconstructed affected source and you are complying with Table 1 to this subpart, you must comply according to paragraphs (d)(1) and (2) of this section.

(1) If you start up your affected source from November 9, 2006 to September 23, 2008, you must comply no later than September 23, 2008.

(2) If you start up your affected source after September 23, 2008, you must comply upon startup of your affected source.

(e) The initial compliance demonstration test required under §63.11120(a)(1) and (2) must be conducted as specified in paragraphs (e)(1) and (2) of this section.

(1) If you have a new or reconstructed affected source, you must conduct the initial compliance test upon installation of the complete vapor balance system.

(2) If you have an existing affected source, you must conduct the initial compliance test as specified in paragraphs (e)(2)(i) or (e)(2)(ii) of this section.

(i) For vapor balance systems installed on or before December 15, 2009, you must test no later than 180 days after the applicable compliance date specified in paragraphs (b) or (c) of this section.

(ii) For vapor balance systems installed after December 15, 2009, you must test upon installation of the complete vapor balance system.

(f) If your GDF is subject to the control requirements in this subpart only because it loads gasoline into fuel tanks other than those in motor vehicles, as defined in §63.11132, you must comply with the standards in this subpart as specified in paragraphs (f)(1) or (f)(2) of this section.

(1) If your GDF is an existing facility, you must comply by January 24, 2014.

(2) If your GDF is a new or reconstructed facility, you must comply by the dates specified in paragraphs (f)(2)(i) and (ii) of this section.

(i) If you start up your GDF after December 15, 2009, but before January 24, 2011, you must comply no later than January 24, 2011.

(ii) If you start up your GDF after January 24, 2011, you must comply upon startup of your GDF.
§63.11115 What are my general duties to minimize emissions?

Each owner or operator of an affected source under this subpart must comply with the requirements of paragraphs (a) and (b) of this section.

(a) You must, at all times, operate and maintain any affected source, including associated air pollution control equipment and monitoring equipment, in a manner consistent with safety and good air pollution control practices for minimizing emissions. Determination of whether such operation and maintenance procedures are being used will be based on information available to the Administrator which may include, but is not limited to, monitoring results, review of operation and maintenance procedures, review of operation and maintenance records, and inspection of the source.

(b) You must keep applicable records and submit reports as specified in §63.11125(d) and §63.11126(b).

§63.11116 Requirements for facilities with monthly throughput of less than 10,000 gallons of gasoline.

(a) You must not allow gasoline to be handled in a manner that would result in vapor releases to the atmosphere for extended periods of time. Measures to be taken include, but are not limited to, the following:

(1) Minimize gasoline spills;

(2) Clean up spills as expeditiously as practicable;

(3) Cover all open gasoline containers and all gasoline storage tank fill-pipes with a gasketed seal when not in use;

(4) Minimize gasoline sent to open waste collection systems that collect and transport gasoline to reclamation and recycling devices, such as oil/water separators.

(b) You are not required to submit notifications or reports as specified in §63.11125, §63.11126, or subpart A of this part, but you must have records available within 24 hours of a request by the Administrator to document your gasoline throughput.

(c) You must comply with the requirements of this subpart by the applicable dates specified in §63.11113.

(d) Portable gasoline containers that meet the requirements of 40 CFR part 59, subpart F, are considered acceptable for compliance with paragraph (a)(3) of this section.

§63.11117 Requirements for facilities with monthly throughput of 10,000 gallons of gasoline or more.

(a) You must comply with the requirements in section §63.11116(a).

(b) Except as specified in paragraph (c) of this section, you must only load gasoline into storage tanks at your facility by utilizing submerged filling, as defined in §63.11132, and as specified in paragraphs (b)(1), (b)(2), or (b)(3) of this section. The applicable distances in paragraphs (b)(1) and (2) shall be measured from the point in the opening of the submerged fill pipe that is the greatest distance from the bottom of the storage tank.

(1) Submerged fill pipes installed on or before November 9, 2006, must be no more than 12 inches from the bottom of the tank.

(2) Submerged fill pipes installed after November 9, 2006, must be no more than 6 inches from the bottom of the tank.

(3) Submerged fill pipes not meeting the specifications of paragraphs (b)(1) or (b)(2) of this section are allowed if the owner or operator can demonstrate that the liquid level in the tank is always above the entire opening of the fill pipe. Documentation
providing such demonstration must be made available for inspection by the Administrator's delegated representative during the course of a site visit.

(c) Gasoline storage tanks with a capacity of less than 250 gallons are not required to comply with the submerged fill requirements in paragraph (b) of this section, but must comply only with all of the requirements in §63.11116.

(d) You must have records available within 24 hours of a request by the Administrator to document your gasoline throughput.

(e) You must submit the applicable notifications as required under §63.11124(a).

(f) You must comply with the requirements of this subpart by the applicable dates contained in §63.11113.

§63.11118 Requirements for facilities with monthly throughput of 100,000 gallons of gasoline or more.

(a) You must comply with the requirements in §§63.11116(a) and 63.11117(b).

(b) Except as provided in paragraph (c) of this section, you must meet the requirements in either paragraph (b)(1) or paragraph (b)(2) of this section.

(1) Each management practice in Table 1 to this subpart that applies to your GDF.

(2) If, prior to January 10, 2008, you satisfy the requirements in both paragraphs (b)(2)(i) and (ii) of this section, you will be deemed in compliance with this subsection.

(i) You operate a vapor balance system at your GDF that meets the requirements of either paragraph (b)(2)(i)(A) or paragraph (b)(2)(i)(B) of this section.

(A) Achieves emissions reduction of at least 90 percent.

(B) Operates using management practices at least as stringent as those in Table 1 to this subpart.

(ii) Your gasoline dispensing facility is in compliance with an enforceable State, local, or tribal rule or permit that contains requirements of either paragraph (b)(2)(i)(A) or paragraph (b)(2)(i)(B) of this section.

(c) The emission sources listed in paragraphs (c)(1) through (3) of this section are not required to comply with the control requirements in paragraph (b) of this section, but must comply with the requirements in §63.11117.

(1) Gasoline storage tanks with a capacity of less than 250 gallons that are constructed after January 10, 2008.

(2) Gasoline storage tanks with a capacity of less than 2,000 gallons that were constructed before January 10, 2008.

(3) Gasoline storage tanks equipped with floating roofs, or the equivalent.

(d) Cargo tanks unloading at GDF must comply with the management practices in Table 2 to this subpart.

(e) You must comply with the applicable testing requirements contained in §63.11120.

(f) You must submit the applicable notifications as required under §63.11124.

(g) You must keep records and submit reports as specified in §§63.11125 and 63.11126.

(h) You must comply with the requirements of this subpart by the applicable dates contained in §63.11113.

TESTING AND MONITORING REQUIREMENTS

§63.11120 What testing and monitoring requirements must I meet?
(a) Each owner or operator, at the time of installation, as specified in §63.11113(e), of a vapor balance system required under §63.11118(b)(1), and every 3 years thereafter, must comply with the requirements in paragraphs (a)(1) and (2) of this section.

(1) You must demonstrate compliance with the leak rate and cracking pressure requirements, specified in item 1(g) of Table 1 to this subpart, for pressure-vacuum vent valves installed on your gasoline storage tanks using the test methods identified in paragraph (a)(1)(i) or paragraph (a)(1)(ii) of this section.

(i) California Air Resources Board Vapor Recovery Test Procedure TP-201.1E,—Leak Rate and Cracking Pressure of Pressure/Vacuum Vent Valves, adopted October 8, 2003 (incorporated by reference, see §63.14).

(ii) Use alternative test methods and procedures in accordance with the alternative test method requirements in §63.7(f).

(2) You must demonstrate compliance with the static pressure performance requirement specified in item 1(h) of Table 1 to this subpart for your vapor balance system by conducting a static pressure test on your gasoline storage tanks using the test methods identified in paragraphs (a)(2)(i), (a)(2)(ii), or (a)(2)(iii) of this section.

(ii) Use alternative test methods and procedures in accordance with the alternative test method requirements in §63.7(f).

(b) Each owner or operator choosing, under the provisions of §63.6(g), to use a vapor balance system other than that described in Table 1 to this subpart must demonstrate to the Administrator or delegated authority under paragraph §63.11131(a) of this subpart, the equivalency of their vapor balance system to that described in Table 1 to this subpart using the procedures specified in paragraphs (b)(1) through (3) of this section.

(1) You must demonstrate initial compliance by conducting an initial performance test on the vapor balance system to demonstrate that the vapor balance system achieves 95 percent reduction using the California Air Resources Board Vapor Recovery Test Procedure TP-201.1,—Volumetric Efficiency for Phase I Vapor Recovery Systems, adopted April 12, 1996, and amended February 1, 2001, and October 8, 2003, (incorporated by reference, see §63.14).

(2) You must, during the initial performance test required under paragraph (b)(1) of this section, determine and document alternative acceptable values for the leak rate and cracking pressure requirements specified in item 1(g) of Table 1 to this subpart and for the static pressure performance requirement in item 1(h) of Table 1 to this subpart.

(3) You must comply with the testing requirements specified in paragraph (a) of this section.

(c) Conduct of performance tests. Performance tests conducted for this subpart shall be conducted under such conditions as the Administrator specifies to the owner or operator based on representative performance (i.e., performance based on normal operating conditions) of the affected source. Upon request, the owner or operator shall make available to the Administrator such records as may be necessary to determine the conditions of performance tests.

(d) Owners and operators of gasoline cargo tanks subject to the provisions of Table 2 to this subpart must conduct annual certification testing according to the vapor tightness testing requirements found in §63.11092(f).

those in motor vehicles, as defined in §63.11132, you must submit the Initial Notification by May 24, 2011. The Initial Notification must contain the information specified in paragraphs (a)(1)(i) through (iii) of this section. The notification must be submitted to the applicable EPA Regional Office and delegated State authority as specified in §63.13.

(i) The name and address of the owner and the operator.

(ii) The address (i.e., physical location) of the GDF.

(iii) A statement that the notification is being submitted in response to this subpart and identifying the requirements in paragraphs (a) through (c) of §63.11117 that apply to you.

(2) You must submit a Notification of Compliance Status to the applicable EPA Regional Office and the delegated State authority, as specified in §63.13, within 60 days of the applicable compliance date specified in §63.11113, unless you meet the requirements in paragraph (a)(3) of this section. The Notification of Compliance Status must be signed by a responsible official who must certify its accuracy, must indicate whether the source has complied with the requirements of this subpart, and must indicate whether the facilities' monthly throughput is calculated based on the volume of gasoline loaded into all storage tanks or on the volume of gasoline dispensed from all storage tanks. If your facility is in compliance with the requirements of this subpart at the time the Initial Notification required under paragraph (a)(1) of this section is due, the Notification of Compliance Status may be submitted in lieu of the Initial Notification provided it contains the information required under paragraph (a)(1) of this section.

(3) If, prior to January 10, 2008, you are operating in compliance with an enforceable State, local, or tribal rule or permit that requires submerged fill as specified in §63.11117(b), you are not required to submit an Initial Notification or a Notification of Compliance Status under paragraph (a)(1) or paragraph (a)(2) of this section.

(b) Each owner or operator subject to the control requirements in §63.11118 must comply with paragraphs (b)(1) through (5) of this section.

(1) You must submit an Initial Notification that you are subject to this subpart by May 9, 2008, or at the time you become subject to the control requirements in §63.11118. If your affected source is subject to the control requirements in §63.11118 only because it loads gasoline into fuel tanks other than those in motor vehicles, as defined in §63.11132, you must submit the Initial Notification by May 24, 2011. The Initial Notification must contain the information specified in paragraphs (b)(1)(i) through (iii) of this section. The notification must be submitted to the applicable EPA Regional Office and delegated State authority as specified in §63.13.

(i) The name and address of the owner and the operator.

(ii) The address (i.e., physical location) of the GDF.

(iii) A statement that the notification is being submitted in response to this subpart and identifying the requirements in paragraphs (a) through (c) of §63.11118 that apply to you.

(2) You must submit a Notification of Compliance Status to the applicable EPA Regional Office and the delegated State authority, as specified in §63.13, in accordance with the schedule specified in §63.9(h). The Notification of Compliance Status must be signed by a responsible official who must certify its accuracy, must indicate whether the source has complied with the requirements of this subpart, and must indicate whether the facility's throughput is determined based on the volume of gasoline loaded into all storage tanks or on the volume of gasoline dispensed from all storage tanks. If your facility is in compliance with the requirements of this subpart at the time the Initial Notification required under paragraph (b)(1) of this section is due, the Notification of Compliance Status may be submitted in lieu of the Initial Notification provided it contains the information required under paragraph (b)(1) of this section.

(3) If, prior to January 10, 2008, you satisfy the requirements in both paragraphs (b)(3)(i) and (ii) of this section, you are not required to submit an Initial Notification or a Notification of Compliance Status under paragraph (b)(1) or paragraph (b)(2) of this subsection.

(i) You operate a vapor balance system at your gasoline dispensing facility that meets the requirements of either paragraphs (b)(3)(i)(A) or (b)(3)(i)(B) of this section.

(A) Achieves emissions reduction of at least 90 percent.

(B) Operates using management practices at least as stringent as those in Table 1 to this subpart.

(ii) Your gasoline dispensing facility is in compliance with an enforceable State, local, or tribal rule or permit that contains requirements of either paragraphs (b)(3)(i)(A) or (b)(3)(i)(B) of this section.
(4) You must submit a Notification of Performance Test, as specified in §63.9(e), prior to initiating testing required by §63.11120(a) and (b).

(5) You must submit additional notifications specified in §63.9, as applicable.

§63.11125 What are my recordkeeping requirements?

(a) Each owner or operator subject to the management practices in §63.11118 must keep records of all tests performed under §63.11120(a) and (b).

(b) Records required under paragraph (a) of this section shall be kept for a period of 5 years and shall be made available for inspection by the Administrator's delegated representatives during the course of a site visit.

(c) Each owner or operator of a gasoline cargo tank subject to the management practices in Table 2 to this subpart must keep records documenting vapor tightness testing for a period of 5 years. Documentation must include each of the items specified in §63.11094(b)(2)(i) through (viii). Records of vapor tightness testing must be retained as specified in either paragraph (c)(1) or paragraph (c)(2) of this section.

(1) The owner or operator must keep all vapor tightness testing records with the cargo tank.

(2) As an alternative to keeping all records with the cargo tank, the owner or operator may comply with the requirements of paragraphs (c)(2)(i) and (ii) of this section.

(i) The owner or operator may keep records of only the most recent vapor tightness test with the cargo tank, and keep records for the previous 4 years at their office or another central location.

(ii) Vapor tightness testing records that are kept at a location other than with the cargo tank must be instantly available (e.g., via e-mail or facsimile) to the Administrator's delegated representative during the course of a site visit or within a mutually agreeable time frame. Such records must be an exact duplicate image of the original paper copy record with certifying signatures.

(d) Each owner or operator of an affected source under this subpart shall keep records as specified in paragraphs (d)(1) and (2) of this section.

(1) Records of the occurrence and duration of each malfunction of operation (i.e., process equipment) or the air pollution control and monitoring equipment.

(2) Records of actions taken during periods of malfunction to minimize emissions in accordance with §63.11115(a), including corrective actions to restore malfunctioning process and air pollution control and monitoring equipment to its normal or usual manner of operation.

§63.11126 What are my reporting requirements?

(a) Each owner or operator subject to the management practices in §63.11118 shall report to the Administrator the results of all volumetric efficiency tests required under §63.11120(b). Reports submitted under this paragraph must be submitted within 180 days of the completion of the performance testing.

(b) Each owner or operator of an affected source under this subpart shall report, by March 15 of each year, the number, duration, and a brief description of each type of malfunction which occurred during the previous calendar year and which caused or may have caused any applicable emission limitation to be exceeded. The report must also include a description of actions taken by an owner or operator during a malfunction of an affected source to minimize emissions in accordance with §63.11115(a), including actions taken to correct a malfunction. No report is necessary for a calendar year in which no malfunctions occurred.

[76 FR 4183, Jan. 24, 2011]
OTHER REQUIREMENTS AND INFORMATION

§63.11130 What parts of the General Provisions apply to me?

Table 3 to this subpart shows which parts of the General Provisions apply to you.

§63.11131 Who implements and enforces this subpart?

(a) This subpart can be implemented and enforced by the U.S. EPA or a delegated authority such as the applicable State, local, or tribal agency. If the U.S. EPA Administrator has delegated authority to a State, local, or tribal agency, then that agency, in addition to the U.S. EPA, has the authority to implement and enforce this subpart. Contact the applicable U.S. EPA Regional Office to find out if implementation and enforcement of this subpart is delegated to a State, local, or tribal agency.

(b) In delegating implementation and enforcement authority of this subpart to a State, local, or tribal agency under subpart E of this part, the authorities contained in paragraph (c) of this section are retained by the Administrator of U.S. EPA and cannot be transferred to the State, local, or tribal agency.

(c) The authorities that cannot be delegated to State, local, or tribal agencies are as specified in paragraphs (c)(1) through (3) of this section.

(1) Approval of alternatives to the requirements in §§63.11116 through 63.11118 and 63.11120.

(2) Approval of major alternatives to test methods under §63.7(e)(2)(ii) and (f), as defined in §63.90, and as required in this subpart.

(3) Approval of major alternatives to recordkeeping and reporting under §63.10(f), as defined in §63.90, and as required in this subpart.

§63.11132 What definitions apply to this subpart?

As used in this subpart, all terms not defined herein shall have the meaning given them in the Clean Air Act (CAA), or in subparts A and BBBBBB of this part. For purposes of this subpart, definitions in this section supersede definitions in other parts or subparts.

Dual-point vapor balance system means a type of vapor balance system in which the storage tank is equipped with an entry port for a gasoline fill pipe and a separate exit port for a vapor connection.

Gasoline means any petroleum distillate or petroleum distillate/alcohol blend having a Reid vapor pressure of 27.6 kilopascals or greater, which is used as a fuel for internal combustion engines.

Gasoline cargo tank means a delivery tank truck or railcar which is loading or unloading gasoline, or which has loaded or unloaded gasoline on the immediately previous load.

Gasoline dispensing facility (GDF) means any stationary facility which dispenses gasoline into the fuel tank of a motor vehicle, motor vehicle engine, nonroad vehicle, or nonroad engine, including a nonroad vehicle or nonroad engine used solely for competition. These facilities include, but are not limited to, facilities that dispense gasoline into on- and off-road, street, or highway motor vehicles, lawn equipment, boats, test engines, landscaping equipment, generators, pumps, and other gasoline-fueled engines and equipment.

Monthly throughput means the total volume of gasoline that is loaded into, or dispensed from, all gasoline storage tanks at each GDF during a month. Monthly throughput is calculated by summing the volume of gasoline loaded into, or dispensed from, all gasoline storage tanks at each GDF during the current day, plus the total volume of gasoline loaded into, or dispensed from, all gasoline storage tanks at each GDF during the previous 364 days, and then dividing that sum by 12.

Motor vehicle means any self-propelled vehicle designed for transporting persons or property on a street or highway.

Nonroad engine means an internal combustion engine (including the fuel system) that is not used in a motor vehicle or a vehicle used solely for competition, or that is not subject to standards promulgated under section 7411 of this title or section 7521 of this title.
Nonroad vehicle means a vehicle that is powered by a nonroad engine, and that is not a motor vehicle or a vehicle used solely for competition.

Submerged filling means, for the purposes of this subpart, the filling of a gasoline storage tank through a submerged fill pipe whose discharge is no more than the applicable distance specified in §63.11117(b) from the bottom of the tank. Bottom filling of gasoline storage tanks is included in this definition.

Vapor balance system means a combination of pipes and hoses that create a closed system between the vapor spaces of an unloading gasoline cargo tank and a receiving storage tank such that vapors displaced from the storage tank are transferred to the gasoline cargo tank being unloaded.

Vapor-tight means equipment that allows no loss of vapors. Compliance with vapor-tight requirements can be determined by checking to ensure that the concentration at a potential leak source is not equal to or greater than 100 percent of the Lower Explosive Limit when measured with a combustible gas detector, calibrated with propane, at a distance of 1 inch from the source.

Vapor-tight gasoline cargo tank means a gasoline cargo tank which has demonstrated within the 12 preceding months that it meets the annual certification test requirements in §63.11092(f) of this part.

Table 1 to Subpart CCCCCC of Part 63—Applicability Criteria and Management Practices for Gasoline Dispensing Facilities With Monthly Throughput of 100,000 Gallons of Gasoline or More

<table>
<thead>
<tr>
<th>If you own or operate</th>
<th>Then you must</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. A new, reconstructed, or existing GDF subject to §63.11118</td>
<td>Install and operate a vapor balance system on your gasoline storage tanks that meets the design criteria in paragraphs (a) through (h).</td>
</tr>
<tr>
<td>(a) All vapor connections and lines on the storage tank shall be equipped with closures that seal upon disconnect.</td>
<td></td>
</tr>
<tr>
<td>(b) The vapor line from the gasoline storage tank to the gasoline cargo tank shall be vapor-tight, as defined in §63.11132.</td>
<td></td>
</tr>
<tr>
<td>(c) The vapor balance system shall be designed such that the pressure in the tank truck does not exceed 18 inches water pressure or 5.9 inches water vacuum during product transfer.</td>
<td></td>
</tr>
<tr>
<td>(d) The vapor recovery and product adaptors, and the method of connection with the delivery elbow, shall be designed so as to prevent the over-tightening or loosening of fittings during normal delivery operations.</td>
<td></td>
</tr>
<tr>
<td>(e) If a gauge well separate from the fill tube is used, it shall be provided with a submerged drop tube that extends the same distance from the bottom of the storage tank as specified in §63.11117(b).</td>
<td></td>
</tr>
<tr>
<td>(f) Liquid fill connections for all systems shall be equipped with vapor-tight caps.</td>
<td></td>
</tr>
<tr>
<td>(g) Pressure/vacuum (PV) vent valves shall be installed on the storage tank vent pipes. The pressure specifications for PV vent valves shall be: a positive pressure setting of 2.5 to 6.0 inches of water and a negative pressure setting of 6.0 to 10.0 inches of water. The total leak rate of all PV vent valves at an affected facility, including connections, shall not exceed 0.17 cubic foot per hour at a pressure of 2.0 inches of water and 0.63 cubic foot per hour at a vacuum of 4 inches of water.</td>
<td></td>
</tr>
<tr>
<td>(h) The vapor balance system shall be capable of meeting the static pressure performance requirement of the following equation:</td>
<td></td>
</tr>
<tr>
<td>[Pf = 2e^{-500.887/v}]</td>
<td></td>
</tr>
<tr>
<td>Where:</td>
<td></td>
</tr>
<tr>
<td>(Pf) = Minimum allowable final pressure, inches of water.</td>
<td></td>
</tr>
<tr>
<td>(v) = Total ullage affected by the test, gallons.</td>
<td></td>
</tr>
<tr>
<td>(e) = Dimensionless constant equal to approximately 2.718.</td>
<td></td>
</tr>
<tr>
<td>2 = The initial pressure, inches water.</td>
<td></td>
</tr>
<tr>
<td>2. A new or reconstructed GDF, or any storage tank(s) constructed after November 9, 2006, at an existing affected facility subject to §63.11118</td>
<td>Equip your gasoline storage tanks with a dual-point vapor balance system, as defined in §63.11132, and comply with the requirements of item 1 in this Table.</td>
</tr>
</tbody>
</table>

Table 2 to Subpart CCCCCC of Part 63—Applicability Criteria and Management Practices for Gasoline Cargo Tanks Unloading at Gasoline Dispensing Facilities With Monthly Throughput of 100,000 Gallons of Gasoline or More

<table>
<thead>
<tr>
<th>If you own or operate</th>
<th>Then you must</th>
</tr>
</thead>
<tbody>
<tr>
<td>A gasoline cargo tank</td>
<td>Not unload gasoline into a storage tank at a GDF subject to the control requirements in this subpart unless the following conditions are met:</td>
</tr>
<tr>
<td>(i) All hoses in the vapor balance system are properly connected,</td>
<td></td>
</tr>
<tr>
<td>(ii) The adapters or couplers that attach to the vapor line on the storage tank have closures that seal upon disconnect,</td>
<td></td>
</tr>
</tbody>
</table>

(iii) All vapor return hoses, couplers, and adapters used in the gasoline delivery are vapor-tight,

(iv) All tank truck vapor return equipment is compatible in size and forms a vapor-tight connection with the vapor balance equipment on the GDF storage tank, and

(v) All hatches on the tank truck are closed and securely fastened.

(vi) The filling of storage tanks at GDF shall be limited to unloading from vapor-tight gasoline cargo tanks. Documentation that the cargo tank has met the specifications of EPA Method 27 shall be carried with the cargo tank, as specified in §63.11125(c).

Table 3 to Subpart CCCCCC of Part 63—Applicability of General Provisions

<table>
<thead>
<tr>
<th>Citation</th>
<th>Subject</th>
<th>Brief description</th>
<th>Applies to subpart CCCCCC</th>
</tr>
</thead>
<tbody>
<tr>
<td>§63.1</td>
<td>Applicability</td>
<td>Initial applicability determination; applicability after standard established; permit requirements; extensions, notifications</td>
<td>Yes, specific requirements given in §63.11111.</td>
</tr>
<tr>
<td>§63.1(c)(2)</td>
<td>Title V Permit</td>
<td>Requirements for obtaining a title V permit from the applicable permitting authority</td>
<td>Yes, §63.11111(f) of subpart CCCCCC exempts identified area sources from the obligation to obtain title V operating permits.</td>
</tr>
<tr>
<td>§63.2</td>
<td>Definitions</td>
<td>Definitions for part 63 standards</td>
<td>Yes, additional definitions in §63.11132.</td>
</tr>
<tr>
<td>§63.3</td>
<td>Units and Abbreviations</td>
<td>Units and abbreviations for part 63 standards</td>
<td>Yes.</td>
</tr>
<tr>
<td>§63.4</td>
<td>Prohibited Activities and Circumvention</td>
<td>Prohibited activities; Circumvention, severability</td>
<td>Yes.</td>
</tr>
</tbody>
</table>
| §63.5 | Construction/Reconstruction | Applicability; applications; approvals | Yes, except that these notifications are not required for facilities subject to §63.11116.
<p>| §63.6(a) | Compliance with Standards/Operation & Maintenance—Applicability | General Provisions apply unless compliance extension; General Provisions apply to area sources that become major | Yes. |
| §63.6(b)(1)-(4) | Compliance Dates for New and Reconstructed Sources | Standards apply at effective date; 3 years after effective date; upon startup; 10 years after construction or reconstruction commences for CAA section 112(f) | Yes. |
| §63.6(b)(5) | Notification | Must notify if commenced construction or reconstruction after proposal | Yes. |
| §63.6(b)(6) | [Reserved] | | |
| §63.6(b)(7) | Compliance Dates for New and Reconstructed Area Sources That Become Major | Area sources that become major must comply with major source standards immediately upon becoming major, regardless of whether required to comply when they were an area source | No. |
| §63.6(c)(1)-(2) | Compliance Dates for Existing Sources | Comply according to date in this subpart, which must be no later than 3 years after effective date; for CAA section 112(f) standards, comply within 90 days of effective date unless compliance extension | No, §63.11113 specifies the compliance dates. |
| §63.6(c)(3)-(4) | [Reserved] | | |
| §63.6(c)(5) | Compliance Dates for Existing Area Sources That Become Major | Area sources that become major must comply with major source standards by date indicated in this subpart or by equivalent time period (e.g., 3 years) | No. |
| §63.6(d) | [Reserved] | | |
| §63.6(e)(1)(i) | General duty to minimize emissions | Operate to minimize emissions at all times; information Administrator will use to determine if operation and maintenance requirements were met. | No. See §63.11115 for general duty requirement. |
| §63.6(e)(1)(ii) | Requirement to correct malfunctions ASAP | Owner or operator must correct malfunctions as soon as possible. | No. |
| §63.6(e)(2) | [Reserved] | | |
| §63.6(e)(3) | Startup, Shutdown, and Malfunction (SSM) Plan | Requirement for SSM plan; content of SSM plan; actions during SSM | No. |
| §63.6(f)(1) | Compliance Except During SSM | You must comply with emission standards at all times except during SSM | No. |
| §63.6(f)(2)-(3) | Methods for Determining Compliance | Compliance based on performance test, operation and maintenance plans, records, inspection | Yes. |
| §63.6(g)(1)-(3) | Alternative Standard | Procedures for getting an alternative standard | Yes. |
| §63.6(h)(1) | Compliance with Opacity/Visible Emission (VE) Standards | You must comply with opacity/VE standards at all times except during SSM | No. |
| §63.6(h)(2)(i) | Determining Compliance with Opacity/VE Standards | If standard does not state test method, use EPA Method 9 for opacity in appendix A of part 60 of this chapter and EPA Method 22 for VE in appendix A of part 60 of this chapter | No. |
| §63.6(h)(2)(ii) | [Reserved] | | |
| §63.6(h)(2)(iii) | Using Previous Tests To Demonstrate Compliance | Criteria for when previous opacity/VE testing can be used to show compliance with this subpart | No. |
| §63.6(h)(3) | [Reserved] |
| §63.6(h)(4) | Notification of Opacity/VE Observation Date | Must notify Administrator of anticipated date of observation | No. |
| §63.6(h)(5)(i), (iii), (v) | Conducting Opacity/VE Observations | Dates and schedule for conducting opacity/VE observations | No. |
| §63.6(h)(5)(ii) | Opacity Test Duration and Averaging Times | Must have at least 3 hours of observation with 30 6-minute averages | No. |
| §63.6(h)(6) | Records of Conditions During Opacity/VE Observations | Must keep records available and allow Administrator to inspect | No. |
| §63.6(h)(7)(i) | Report Continuous Opacity Monitoring System (COMS) Monitoring Data From Performance Test | Must submit COMS data with other performance test data | No. |
| §63.6(h)(7)(ii) | Using COMS Instead of EPA Method 9 | Can submit COMS data instead of EPA Method 9 results even if rule requires EPA Method 9 in appendix A of part 60 of this chapter, but must notify Administrator before performance test | No. |
| §63.6(h)(7)(iii) | Averaging Time for COMS During Performance Test | To determine compliance, must reduce COMS data to 6-minute averages | No. |
| §63.6(h)(7)(iv) | COMS Requirements | Owner/operator must demonstrate that COMS performance evaluations are conducted according to §63.8(e); COMS are properly maintained and operated according to §63.8(d) | Yes. |
| §63.6(h)(7)(v) | Determining Compliance with Opacity/VE Standards | COMS is probable but not conclusive evidence of compliance with opacity standard, even if EPA Method 9 observation shows otherwise. Requirements for COMS to be probable evidence-proper maintenance, meeting Performance Specification 1 in appendix B of part 60 of this chapter, and data have not been altered | No. |
| §63.6(h)(8) | Determining Compliance with Opacity/VE Standards | Administrator will use all COMS, EPA Method 9 (in appendix A of part 60 of this chapter), and EPA Method 22 (in appendix A of part 60 of this chapter) results, as well as information about operation and maintenance to determine compliance | No. |
| §63.6(h)(9) | Adjusted Opacity Standard | Procedures for Administrator to adjust an opacity standard | Yes. |
| §63.6(i)(1)-(14) | Compliance Extension | Procedures and criteria for Administrator to grant compliance extension | Yes. |
| §63.6(j) | Presidential Compliance Exemption | President may exempt any source from requirement to comply with this subpart | Yes. |
| §63.7(a)(2) | Performance Test Dates | Dates for conducting initial performance testing; must conduct 180 days after compliance date | Yes. |
| §63.7(a)(3) | CAA Section 114 Authority | Administrator may require a performance test under CAA section 114 at any time | Yes. |
| §63.7(b)(1) | Notification of Performance Test | Must notify Administrator 60 days before the test | Yes. |
| §63.7(b)(2) | Notification of Re-scheduling | If have to reschedule performance test, must notify Administrator of rescheduled date as soon as practicable and without delay | Yes. |
| §63.7(c) | Quality Assurance (QA)/Test Plan | Requirement to submit site-specific test plan 60 days before the test or on date Administrator agrees with; test plan approval procedures; performance audit requirements; internal and external QA procedures for testing | Yes. |
| §63.7(d) | Testing Facilities | Requirements for testing facilities | Yes. |
| §63.7(e)(1) | Conditions for Conducting Performance Tests | Performance test must be conducted under representative conditions | No, §63.11120(c) specifies conditions for conducting performance tests. |
| §63.7(e)(2) | Conditions for Conducting Performance Tests | Must conduct according to this subpart and EPA test methods unless Administrator approves alternative | Yes. |
| §63.7(e)(3) | Test Run Duration | Must have three test runs of at least 1 hour each; compliance is based on arithmetic mean of three runs; conditions when data from an additional test run can be used | Yes. |
| §63.7(f) | Alternative Test Method | Procedures by which Administrator can grant approval to use an intermediate or major change, or alternative to a test method | Yes. |
| §63.7(g) | Performance Test Data Analysis | Must include raw data in performance test report; must submit performance test data 60 days after end of test with the Notification of Compliance Status; keep data for 5 years | Yes. |
| §63.7(h) | Waiver of Tests | Procedures for Administrator to waive performance test | Yes. |
| §63.8(a)(1) | Applicability of Monitoring Requirements | Subject to all monitoring requirements in standard | Yes. |
| §63.8(a)(2) | Performance Specifications | Performance Specifications in appendix B of 40 CFR part 60 apply | Yes. |
| §63.8(a)(3) | [Reserved] |
| §63.8(a)(4) | Monitoring of Flares | Monitoring requirements for flares in §63.11 apply | Yes. |
| §63.8(b)(1) | Monitoring | Must conduct monitoring according to standard unless Administrator approves alternative | Yes. |
| §63.8(b)(2)-(3) | Multiple Effluents and Multiple Monitoring Systems | Specific requirements for installing monitoring systems; must install on each affected source or after combined with another affected source before it is released to the atmosphere provided the monitoring is sufficient to demonstrate compliance with the standard; if more than one monitoring system on an emission point, must report all monitoring system results, unless one monitoring system is a backup | No. |
| §63.8(c)(1) | Monitoring System Operation and Maintenance | Maintain monitoring system in a manner consistent with good air pollution control practices | No. |
| §63.8(c)(2) | Performance Specifications | Performance Specifications in appendix B of 40 CFR part 60 apply | Yes. |</p>
<table>
<thead>
<tr>
<th>Section</th>
<th>Requirement</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>§63.8(c)</td>
<td>CMS Requirements</td>
<td>Must install to get representative emission or parameter measurements; must verify operational status before or at performance test.</td>
</tr>
<tr>
<td>§63.8(d)</td>
<td>CMS Quality Control</td>
<td>Requirements for CMS quality control, including calibration, etc.; must keep quality control plan on record for 5 years; keep old versions for 5 years after revisions.</td>
</tr>
<tr>
<td>§63.8(e)</td>
<td>CMS Performance Evaluation</td>
<td>Notification, performance evaluation test plan, reports.</td>
</tr>
<tr>
<td>§63.8(f)</td>
<td>Alternative Monitoring Method</td>
<td>Procedures for Administrator to approve alternative monitoring.</td>
</tr>
<tr>
<td>§63.8(f)</td>
<td>Alternative to Relative Accuracy Test</td>
<td>Procedures for Administrator to approve alternative relative accuracy tests for continuous emissions monitoring system (CEMS).</td>
</tr>
<tr>
<td>§63.8(g)</td>
<td>Data Reduction</td>
<td>COMS 6-minute averages calculated over at least 36 evenly spaced data points; CEMS 1 hour averages computed over at least 4 equally spaced data points; data that cannot be used in average.</td>
</tr>
<tr>
<td>§63.9(a)</td>
<td>Notification Requirements</td>
<td>Applicability and State delegation.</td>
</tr>
<tr>
<td>§63.9(b)</td>
<td>Initial Notifications</td>
<td>Submit notification within 120 days after effective date; notification of intent to construct/reconstruct, notification of commencement of construction/reconstruction, notification of startup; contents of each notification.</td>
</tr>
<tr>
<td>§63.9(c)</td>
<td>Request for Compliance Extension</td>
<td>Can request if cannot comply by date or if installed best available control technology or lowest achievable emission rate.</td>
</tr>
<tr>
<td>§63.9(d)</td>
<td>Notification of Special Compliance Requirements for New Sources</td>
<td>For sources that commence construction between proposal and promulgation and want to comply 3 years after effective date.</td>
</tr>
<tr>
<td>§63.9(e)</td>
<td>Notification of Performance Test</td>
<td>Notify Administrator 60 days prior.</td>
</tr>
<tr>
<td>§63.9(f)</td>
<td>Notification of VE/Optical Test</td>
<td>Notify Administrator 30 days prior.</td>
</tr>
<tr>
<td>§63.9(g)</td>
<td>Additional Notifications when Using CMS</td>
<td>Notification of performance evaluation; notification about use of COMS data; notification that exceeded criterion for relative accuracy alternative.</td>
</tr>
<tr>
<td>§63.9(h)</td>
<td>Notification of Compliance Status</td>
<td>Contents due 60 days after end of performance test or other compliance demonstration, except for opacity/VE, which are due 30 days after; when to submit to Federal vs. State authority.</td>
</tr>
<tr>
<td>§63.9(i)</td>
<td>Adjustment of Submittal Deadlines</td>
<td>Procedures for Administrator to approve change when notifications must be submitted.</td>
</tr>
<tr>
<td>§63.10(a)</td>
<td>Recordkeeping/Reporting</td>
<td>Applies to all, unless compliance extension; when to submit to Federal vs. State authority; procedures for owners of more than one source.</td>
</tr>
<tr>
<td>§63.10(b)</td>
<td>Recordkeeping/Reporting</td>
<td>General requirements; keep all records readily available; keep for 5 years.</td>
</tr>
<tr>
<td>§63.10(b)</td>
<td>Records related to SSM</td>
<td>Recordkeeping of occurrence and duration of startups and shutdowns.</td>
</tr>
<tr>
<td>§63.10(b)</td>
<td>Records related to SSM</td>
<td>Recordkeeping of malfunctions.</td>
</tr>
<tr>
<td>§63.10(b)</td>
<td>Maintenance records</td>
<td>Recordkeeping of maintenance on air pollution control and monitoring equipment.</td>
</tr>
<tr>
<td>§63.10(b)</td>
<td>Records Related to SSM</td>
<td>Actions taken to minimize emissions during SSM.</td>
</tr>
<tr>
<td>§63.10(b)</td>
<td>Records Related to SSM</td>
<td>Actions taken to minimize emissions during SSM.</td>
</tr>
<tr>
<td>§63.10(b)</td>
<td>CMS Records</td>
<td>Malfunctions, inoperative, out-of-control periods.</td>
</tr>
<tr>
<td>§63.10(b)</td>
<td>Records</td>
<td>Records when under waiver.</td>
</tr>
<tr>
<td>§63.10(b)</td>
<td>Records</td>
<td>Records when using alternative relative accuracy test.</td>
</tr>
<tr>
<td>§63.10(b)</td>
<td>Records</td>
<td>All documentation supporting Initial Notification and Notification of Compliance Status.</td>
</tr>
<tr>
<td>§63.10(b)</td>
<td>Records</td>
<td>Applicability determinations.</td>
</tr>
<tr>
<td>§63.10(b)</td>
<td>Records</td>
<td>Additional records for CMS.</td>
</tr>
<tr>
<td>§63.10(d)</td>
<td>General Reporting Requirements</td>
<td>Requirement to report.</td>
</tr>
<tr>
<td>§63.10(d)</td>
<td>Report of Performance Test Results</td>
<td>When to submit to Federal or State authority.</td>
</tr>
<tr>
<td>§63.10(d)</td>
<td>Reporting Opacity or VE Observations</td>
<td>What to report and when.</td>
</tr>
<tr>
<td>§63.10(d)</td>
<td>Progress Reports</td>
<td>Must submit progress reports on schedule if under compliance extension.</td>
</tr>
<tr>
<td>§63.10(d)</td>
<td>SSM Reports</td>
<td>Contents and submission.</td>
</tr>
<tr>
<td>§63.10(e)</td>
<td>Additional CMS Reports</td>
<td>Must report results for each CEMS on a unit; written copy of CMS performance evaluation; two-three copies of COMS performance evaluation.</td>
</tr>
<tr>
<td>§63.10(e)</td>
<td>Reports</td>
<td>Schedule for reporting excess emissions.</td>
</tr>
<tr>
<td>§63.10(e)</td>
<td>Excess Emissions Reports</td>
<td>Requirement to revert to quarterly submission if there is an excess emissions and parameter monitor.</td>
</tr>
<tr>
<td>Section</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
<td></td>
</tr>
<tr>
<td>§63.10(e)(3)(iv)-(v)</td>
<td>Excess Emissions Reports Requirement to revert to quarterly submission if there is an excess emissions and parameter monitor exceedances (now defined as deviations); provision to request semiannual reporting after compliance for 1 year; submit report by 30th day following end of quarter or calendar half; if there has not been an exceedance or excess emissions (now defined as deviations), report contents in a statement that there have been no deviations; must submit report containing all of the information in §§63.8(c)(7)-(8) and 63.10(c)(5)-(13)</td>
<td></td>
</tr>
<tr>
<td>§63.10(e)(3)(vii)-(viii)</td>
<td>Excess Emissions Report and Summary Report Requirements for reporting excess emissions for CMS; requires all of the information in §§63.10(c)(5)-(13) and 63.8(c)(7)-(8)</td>
<td></td>
</tr>
<tr>
<td>§63.10(e)(4)</td>
<td>Reporting COMS Data Must submit COMS data with performance test data</td>
<td></td>
</tr>
<tr>
<td>§63.10(f)</td>
<td>Waiver for Recordkeeping/Reporting Procedures for Administrator to waive</td>
<td></td>
</tr>
<tr>
<td>§63.11(b)</td>
<td>Fiares Requirements for flares</td>
<td></td>
</tr>
<tr>
<td>§63.12</td>
<td>Delegation State authority to enforce standards</td>
<td></td>
</tr>
<tr>
<td>§63.13</td>
<td>Addresses Addresses where reports, notifications, and requests are sent</td>
<td></td>
</tr>
<tr>
<td>§63.14</td>
<td>Incorportations by Reference Test methods incorporated by reference</td>
<td></td>
</tr>
<tr>
<td>§63.15</td>
<td>Availability of Information Public and confidential information</td>
<td></td>
</tr>
</tbody>
</table>

Appendix H
Acid Rain Permit Application Forms
Acid Rain Permit Application

For more information, see instructions and 40 CFR 72.30 and 72.31.

This submission is: ☑️ New ☐ Revised ☐ for ARP permit renewal

<table>
<thead>
<tr>
<th>Facility (Source) Name: Union Power Station</th>
<th>State: AR</th>
<th>Plant Code: 55380</th>
</tr>
</thead>
</table>

STEP 2

Enter the unit ID# for every affected unit at the affected source in column "a."

<table>
<thead>
<tr>
<th>Unit ID#</th>
<th>Unit Will Hold Allowances in Accordance with 40 CFR 72.9(c)(1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CTG-1</td>
<td>Yes</td>
</tr>
<tr>
<td>CTG-2</td>
<td>Yes</td>
</tr>
<tr>
<td>CTG-3</td>
<td>Yes</td>
</tr>
<tr>
<td>CTG-4</td>
<td>Yes</td>
</tr>
<tr>
<td>CTG-5</td>
<td>Yes</td>
</tr>
<tr>
<td>CTG-6</td>
<td>Yes</td>
</tr>
<tr>
<td>CTG-7</td>
<td>Yes</td>
</tr>
<tr>
<td>CTG-8</td>
<td>Yes</td>
</tr>
</tbody>
</table>

EPA Form 7610-16 (Revised 7-2014)
Permit Requirements

STEP 3

(1) The designated representative of each affected source and each affected unit at the source shall:
 (i) Submit a complete Acid Rain permit application (including a compliance plan) under 40 CFR part 72 in accordance with the deadlines specified in 40 CFR 72.30; and
 (ii) Submit in a timely manner any supplemental information that the permitting authority determines is necessary in order to review an Acid Rain permit application and issue or deny an Acid Rain permit;
(2) The owners and operators of each affected source and each affected unit at the source shall:
 (i) Operate the unit in compliance with a complete Acid Rain permit application or a superseding Acid Rain permit issued by the permitting authority; and
 (ii) Have an Acid Rain Permit.

Monitoring Requirements

(1) The owners and operators and, to the extent applicable, designated representative of each affected source and each affected unit at the source shall comply with the monitoring requirements as provided in 40 CFR part 75.
(2) The emissions measurements recorded and reported in accordance with 40 CFR part 75 shall be used to determine compliance by the source or unit, as appropriate, with the Acid Rain emissions limitations and emissions reduction requirements for sulfur dioxide and nitrogen oxides under the Acid Rain Program.
(3) The requirements of 40 CFR part 75 shall not affect the responsibility of the owners and operators to monitor emissions of other pollutants or other emissions characteristics at the unit under other applicable requirements of the Act and other provisions of the operating permit for the source.

Sulfur Dioxide Requirements

(1) The owners and operators of each source and each affected unit at the source shall:
 (i) Hold allowances, as of the allowance transfer deadline, in the source’s compliance account (after deductions under 40 CFR 73.34(c)), not less than the total annual emissions of sulfur dioxide for the previous calendar year from the affected units at the source; and
 (ii) Comply with the applicable Acid Rain emissions limitations for sulfur dioxide.
(2) Each ton of sulfur dioxide emitted in excess of the Acid Rain emissions limitations for sulfur dioxide shall constitute a separate violation of the Act.
(3) An affected unit shall be subject to the requirements under paragraph (1) of the sulfur dioxide requirements as follows:
 (i) Starting January 1, 2000, an affected unit under 40 CFR 72.6(a)(2); or
 (ii) Starting on the later of January 1, 2000 or the deadline for monitor certification under 40 CFR part 75, an affected unit under 40 CFR 72.6(a)(3).
Sulfur Dioxide Requirements, Cont'd.

STEP 3, Cont'd.

(4) Allowances shall be held in, deducted from, or transferred among Allowance Tracking System accounts in accordance with the Acid Rain Program.
(5) An allowance shall not be deducted in order to comply with the requirements under paragraph (1) of the sulfur dioxide requirements prior to the calendar year for which the allowance was allocated.
(6) An allowance allocated by the Administrator under the Acid Rain Program is a limited authorization to emit sulfur dioxide in accordance with the Acid Rain Program. No provision of the Acid Rain Program, the Acid Rain permit application, the Acid Rain permit, or an exemption under 40 CFR 72.7 or 72.8 and no provision of law shall be construed to limit the authority of the United States to terminate or limit such authorization.
(7) An allowance allocated by the Administrator under the Acid Rain Program does not constitute a property right.

Nitrogen Oxides Requirements

The owners and operators of the source and each affected unit at the source shall comply with the applicable Acid Rain emissions limitation for nitrogen oxides.

Excess Emissions Requirements

(1) The designated representative of an affected source that has excess emissions in any calendar year shall submit a proposed offset plan, as required under 40 CFR part 77.
(2) The owners and operators of an affected source that has excess emissions in any calendar year shall:
 (i) Pay without demand the penalty required, and pay upon demand the interest on that penalty, as required by 40 CFR part 77; and
 (ii) Comply with the terms of an approved offset plan, as required by 40 CFR part 77.

Recordkeeping and Reporting Requirements

(1) Unless otherwise provided, the owners and operators of the source and each affected unit at the source shall keep on site at the source each of the following documents for a period of 5 years from the date the document is created. This period may be extended for cause, at any time prior to the end of 5 years, in writing by the Administrator or permitting authority:
 (i) The certificate of representation for the designated representative for the source and each affected unit at the source and all documents that demonstrate the truth of the statements in the certificate of representation, in accordance with 40 CFR 72.24; provided that the certificate and documents shall be retained on site at the source beyond such 5-year period until such documents are superseded because of the
submission of a new certificate of representation changing the designated representative;

STEP 3, Cont'd. Recordkeeping and Reporting Requirements, Cont'd.

(ii) All emissions monitoring information, in accordance with 40 CFR part 75, provided that to the extent that 40 CFR part 75 provides for a 3-year period for recordkeeping, the 3-year period shall apply.
(iii) Copies of all reports, compliance certifications, and other submissions and all records made or required under the Acid Rain Program; and,
(iv) Copies of all documents used to complete an Acid Rain permit application and any other submission under the Acid Rain Program or to demonstrate compliance with the requirements of the Acid Rain Program.

(2) The designated representative of an affected source and each affected unit at the source shall submit the reports and compliance certifications required under the Acid Rain Program, including those under 40 CFR part 72 subpart I and 40 CFR part 75.

Liability

(1) Any person who knowingly violates any requirement or prohibition of the Acid Rain Program, a complete Acid Rain permit application, an Acid Rain permit, or an exemption under 40 CFR 72.7 or 72.8, including any requirement for the payment of any penalty owed to the United States, shall be subject to enforcement pursuant to section 113(c) of the Act.
(2) Any person who knowingly makes a false, material statement in any record, submission, or report under the Acid Rain Program shall be subject to criminal enforcement pursuant to section 113(c) of the Act and 18 U.S.C. 1001.
(3) No permit revision shall excuse any violation of the requirements of the Acid Rain Program that occurs prior to the date that the revision takes effect.
(4) Each affected source and each affected unit shall meet the requirements of the Acid Rain Program.
(5) Any provision of the Acid Rain Program that applies to an affected source (including a provision applicable to the designated representative of an affected source) shall also apply to the owners and operators of such source and of the affected units at the source.
(6) Any provision of the Acid Rain Program that applies to an affected unit (including a provision applicable to the designated representative of an affected unit) shall also apply to the owners and operators of such unit.
(7) Each violation of a provision of 40 CFR parts 72, 73, 74, 75, 76, 77, and 78 by an affected source or affected unit, or by an owner or operator or designated representative of such source or unit, shall be a separate violation of the Act.

Effect on Other Authorities

No provision of the Acid Rain Program, an Acid Rain permit application, an Acid Rain permit, or an exemption under 40 CFR 72.7 or 72.8 shall be construed as:
Facility (Source) Name: Union Power Station

(1) Except as expressly provided in title IV of the Act, exempting or excluding the owners and operators and, to the extent applicable, the designated representative of an affected source or affected unit from compliance with any other provision of the Act, including the provisions of title I of the Act relating

Effect on Other Authorities, Cont'd.

to applicable National Ambient Air Quality Standards or State Implementation Plans;
(2) Limiting the number of allowances a source can hold; *provided*, that the number of allowances held by the source shall not affect the source's obligation to comply with any other provisions of the Act;
(3) Requiring a change of any kind in any State law regulating electric utility rates and charges, affecting any State law regarding such State regulation, or limiting such State regulation, including any prudence review requirements under such State law;
(4) Modifying the Federal Power Act or affecting the authority of the Federal Energy Regulatory Commission under the Federal Power Act; or,
(5) Interfering with or impairing any program for competitive bidding for power supply in a State in which such program is established.

Certification

I am authorized to make this submission on behalf of the owners and operators of the affected source or affected units for which the submission is made. I certify under penalty of law that I have personally examined, and am familiar with, the statements and information submitted in this document and all its attachments. Based on my inquiry of those individuals with primary responsibility for obtaining the information, I certify that the statements and information are to the best of my knowledge and belief true, accurate, and complete. I am aware that there are significant penalties for submitting false statements and information or omitting required statements and information, including the possibility of fine or imprisonment.

<table>
<thead>
<tr>
<th>Name: Myra Glover</th>
</tr>
</thead>
<tbody>
<tr>
<td>Signature: </td>
</tr>
</tbody>
</table>
CERTIFICATE OF SERVICE

I, Cynthia Hook, hereby certify that a copy of this permit has been mailed by first class mail to
Entergy Arkansas, LLC - Union Power Station, 6497 Calion Highway, El Dorado, AR, 71730,
on this 27th day of September, 2019.

Cynthia Hook, ASIII, Office of Air Quality