Arkansas Clean Cities News

June 2015

Ryder Providing CNG Trucks to Two Arkansas Fleets

Ryder System Inc. has expanded its natural gas vehicle (NGV) offering into Arkansas for the first time and will lease NGVs to two current fleet customers in the state.

Alpha Packaging Inc., a corrugated box manufacturer, has signed a full-service lease agreement for seven compressed natural gas (CNG) tractors. The NGVs will replace current Ryder-leased diesel vehicles and will be used to support Alpha’s deliveries to all areas within 300 miles of its Greenwood, Arkansas plant. To support its new natural gas fleet, Alpha is building an on-site CNG fueling station at its location.

“Even with the recent drop in diesel fuel prices, the stability of natural gas fuel costs, along with the environmental benefits of natural gas vehicle technology, bring significant value to our fleet operation,” says Alpha Packaging President Mike Stec.

“Leasing natural gas trucks from Ryder helps us with our long-term transportation needs and aligns with our efforts to be a responsible, sustainable company.”

Boyd Metals Transportation LLC has also signed a full-service lease agreement for seven CNG tractors to replace current Ryder-leased diesel vehicles. The new CNG delivery fleet will be used to deliver Boyd's inventory of carbon steel, stainless steel, aluminum, and fiberglass products from the company’s Fort Smith, Arkansas warehouse.

“We knew we could count on Ryder to help us successfully deploy these advanced fuel vehicles into our fleet,” says Michael Cooper, general manager of Boyd Metals Transportation. “We may even consider expanding our fleet with Ryder if this new advanced fuel vehicle solution meets the company’s expectations.”

Ryder say it will maintain both companies’ CNG trucks at its Fort Smith, Arkansas service facility, which is being engineered to meet the unique compliance requirements for natural gas.

“We continue to see interest from businesses focused on the long-term economic and environmental benefits of natural gas,” states Dennis Cooke, Ryder’s president of global fleet management solutions.

Pea Ridge National Park Rolls on With Alternative Fuels

Stretching from sea to shining sea, millions of cars travel to and between America’s National Parks each year. Unfortunately, these vehicles produce greenhouse gases that contribute to climate change and pollutants that threaten the air quality of these national treasures. To reduce these vehicles’ environmental impact, the Energy Department’s Clean Cities Program and the National Park Service (NPS) announced new projects at nine parks that deploy alternative fuel and fuel-efficient vehicles on the road, cut vehicle idling, and improve vehicle efficiency.

Among the nine newest parks to adopt alternative fuel vehicles and lawn mowers, install plug-in electric vehicle chargers, and implement idle-reduction programs is Arkansas’s Pea Ridge National Military Park. This Park, which preserves a Civil War battle site, is working with the Arkansas Clean Cities Coalition to replace a gasoline pickup truck with a dedicated propane truck. The Park will also develop a Green Team to educate staff, visitors, and students on sustainability and conservation.
Kum & Go, an Iowa-based convenience store chain and retail provider, has opened its first compressed natural gas (CNG) station. The station was opened for business on May 8, 2015 but the grand opening was held on June 4, 2015. The store is located at 1220 E. Robinson in Springdale, Arkansas.

“Staying at the forefront of innovation and sustainability with our fuel selection is a top priority for us. Kum & Go is always evaluating new potential locations and opportunities to provide reliable fuels to meet customer demand. We continue to assess our CNG strategy and how CNG fits into our overall fuel offering,” said Jim Pirollo, Vice President of Fuels.

One of the area companies that will be taking advantage of this location will be Ozark Regional Transit (ORT) who recently added four new CNG buses to its fleet. According to Joel Garner, Executive Director, “The convenience of the station is really what is key for one of the biggest decision factors for adding the CNG buses.” The station is located just over a mile away from the bus depot and maintenance shop. According to Mr. Garner, ORT is already seeing a savings from using the alternative fuel and he expects the return on investment to be achieved in approximately 3 years depending on the mileage of each bus. “We are really excited that northwest Arkansas finally has a CNG station.”

Another organization planning to utilize the Kum & Go location is the Springdale Water Utility. The utility purchased two trucks in anticipation of CNG availability within close proximity of their offices. According to Heath Ward, Executive Director, the utility plans to convert at least five of their existing fleet vehicles in the next fiscal year.

Speakers for the grand opening ceremony included Mark Hasting, COO of Kum & Go, Senator Jon Woods, Representative Micah S. Neal and Mitchell Simpson, Director of the Arkansas Energy Office.
Do You Know Where to Go to Find Alternative Fuel Stations?

Currently, there are 138 public alternative fuel stations in Arkansas. The Alternative Fuels Data Center (AFDC) has a map on its website (http://www.afdc.energy.gov/locator/stations/) that can help travelers find alternative fuel locations throughout the United States. An iPhone app can also be downloaded from the App Store.

UAFS Ride and Drive Event for Alternative Fueled Vehicles

A Ride and Drive Event for alternative fueled vehicles (AFVs) was held May 27th in Fort Smith. This event was in conjunction with the grand opening of the University of Arkansas at Fort Smith’s Sustainable Conservation House. Dignitaries for the City of Fort Smith as well as members of the university and general public were in attendance.

Local dealerships were present with AFVs from their own lots and presented an opportunity for attendees to receive information on these vehicles as well as take a test drive.

The following dealerships and their representatives partnered with Arkansas Clean Cities Coalition, UAFS and Falcon CNG to make this event happen: Smith Chevrolet Cadillac Nissan, Randall Ford, Breeden Dodge Chrysler Jeep, J. Pauley Toyota, and BMW of Northwest Arkansas.
This newsletter is a monthly feature of the Arkansas Clean Cities Coalition, which features alternative fuels and vehicles, advanced technology and efficient vehicles and greater use of mass transit systems, trip elimination measures and other congestion mitigation approaches.

Clean Cities Technical Response Service Question of the Month

Question of the Month: What are the latest updates on hydrogen and fuel cell electric vehicle deployment?

Answer: Fuel cell electric vehicles (FCEVs) have been around for a while, mostly in limited quantities and locations through demonstration projects. But these vehicles, with their potential to significantly cut petroleum consumption and reduce emissions, are starting to make their way into dealerships and onto roads across the country. Though the market for FCEVs is still in its infancy, many government organizations and private companies are working on research and deployment efforts to make hydrogen a widespread, viable, affordable, and safe alternative vehicle fuel.

Below are some of the recent activities related to FCEV commercialization:

Vehicle Availability

FCEVs are beginning to enter the consumer market in certain regions in the United States and around the world. Hyundai introduced the 2015 Tucson Fuel Cell in California last year for lease, and Toyota Motor Company announced they will release the 2016 Mirai for sale this October at eight California dealerships that were specially selected for their experience with alternative fuels and their proximity to existing hydrogen fueling stations. Vehicle original equipment manufacturers (OEMs) such as BMW, Ford, General Motors, Honda, Mercedes/Daimler, Nissan, and Volkswagen are expecting to launch FCEV production vehicles in select regions of the country in the coming years. Other automakers continue to introduce their FCEVs through demonstration projects. The FCEV market is also growing for buses, ground support equipment, medium- and heavy-duty vehicles, back-up power, prime power applications, and continues to be strong for forklifts.

While OEMs are offering affordable lease options, some of which include the cost of fuel, FCEVs are still expensive. However, production costs have decreased significantly in recent years and FCEVs are expected to be cost-competitive with conventional vehicles in the coming years.

Hydrogen Fueling Infrastructure

As the FCEV market expands, hydrogen fueling infrastructure will need to grow to match demand. Most of the hydrogen stations available today have been built to support OEM FCEV demonstration projects. According to the Alternative Fuels Data Center’s (AFDC) Alternative Fueling Station Locator (http://www.afdc.energy.gov/fuels/hydrogen_locations.html), there are 12 publicly accessible hydrogen stations in the United States, with many more in the planning stages. According to the California Fuel Cell Partnership (http://cafcp.org/), there are 49 more stations in development in California that will be publically available. Development efforts are also underway in Connecticut, Hawaii, Maine, Massachusetts, New Jersey, New York, Rhode Island, and Vermont.

Like the vehicles, the high cost of fueling equipment remains a key challenge. Hydrogen station costs can vary significantly based on hydrogen feedstock, station capacity, utilization, proximity to production, and available incentives. The National Renewable Energy Laboratory’s (NREL) Hydrogen Station Cost Calculator estimates that stations can cost between $2 and $5 million. However, like FCEVs, as the demand grows, the cost of hydrogen fueling equipment will decrease and the number of stations will increase.

Codes, Standards, and Incentives

The widespread deployment of FCEVs and the associated network of hydrogen fueling stations requires the development, maintenance, and harmonization of codes, standards, and regulations to keep up with the technology. These efforts are ongoing and are supported by the U.S. Department of Energy (DOE), as well as domestic and international organizations.

Incentives will also continue to be important to promote and maintain a market for hydrogen and FCEVs. California is leading in the number of relevant state incentives. For instance, to meet the objectives of California’s Zero Emission Vehicle (ZEV) Program, the California Energy Commission’s Alternative and Renewable Fuel and Vehicle Technology Program (http://www.energy.ca.gov/energyprograms_facts/zev/) is allocating $20 million annually for the construction of at least 100 public hydrogen stations in California by January 1, 2024. In addition, California’s Clean Vehicle Rebate Project offers up to $5,000 for the purchase or lease of approved FCEVs (http://energycenter.org/clean-vehicle-rebate-project). Nine other states (Connecticut, Maine, Maryland, Massachusetts, New Jersey, New York, Oregon, Rhode Island, and Vermont) have also adopted California’s ZEV mandate to increase the number of ZEVs, including FCEVs, on the roads.