ABC Formula/Conversion Table
for Wastewater Treatment, Industrial, Collection and Laboratory Exams

Alkalinity, as mg CaCO₃/L = (Titrant Volume, mL)(Acid Normality)(50,000) / Sample Volume, mL

Amps = Volts / Ohms

Area of Circle = (0.785) (Diameter²) or (Π) (Radius²)

Area of Cone (lateral area) = (Π) (Radius) √(Radius² + Height²)

Area of Cone (total surface area) = (Π) (Radius) (Radius + √(Radius² + Height²))

Area of Cylinder (total outside surface area) = [Surface Area of End #1] + [Surface Area of End #2] + [(Π) (Diameter) (Height or Depth)]

Area of Rectangle = (Length) (Width)

Area of a Right Triangle = (Base)(Height) / 2

Average (arithmetic mean) = Sum of All Terms / Number of Terms

Average (geometric mean) = [(X₁) (X₂) (X₃) (X₄) (X₅)]¹/n The nᵗʰ root of the product of n numbers

Biochemical Oxygen Demand (unseeded), in mg/L = (Initial DO, mg/L) – (Final DO, mg/L) / Sample Volume, mL

Chemical Feed Pump Setting, % Stroke = (Desired Flow)(100%) / Maximum Flow

Chemical Feed Pump Setting, mL/min = (Flow, MGD) (Dose, mg/L) (3.785 L/gal) (1,000,000 gal/MG) / (Liquid, mg/mL) (24 hr/day) (60 min/hr)

Circumference of Circle = (Π) (Diameter)

Composite Sample Single Portion = (Instantaneous Flow) (Total Sample Volume) / (Number of Portions) (Average Flow)

Cycle Time, min. = Storage Volume, gal / Pump Capacity, gpm - Wet Well Inflow, gpm

Degrees Celsius = (Degrees Fahrenheit - 32) (5/9) or (F - 32) / 1.8

Degrees Fahrenheit = [(Degrees Celsius) (9/5) + 32] or [(Degrees Celsius) (1.8) + 32]

Detention Time = Volume / Flow Note: Units must be compatible.
Electromotive Force (E.M.F), volts = (Current, amps) (Resistance, ohms) or E = IR

Feed Rate, lbs/day = \(\frac{(\text{Dosage, mg/L})(\text{Capacity, MGD})(8.34 \text{lbs/gal})}{(\text{Purity, decimal percentage})} \)

Filter Backwash Rate, gpm/sq ft = \(\frac{\text{Flow, gpm}}{\text{Filter Area, sq ft}} \)

Filter Backwash Rise Rate, in/minute = \(\frac{(\text{Backwash Rate, GPM/sq ft})(12 \text{ in/ft})}{(7.48 \text{ gal/cu ft})} \)

Filter Yield, lbs/hr/sq ft = \(\frac{(\text{Solids Loading, lbs/day})(\text{Recovery, %} / 100\%)}{(\text{Filter Operation, hr/day})(\text{Area, sq ft})} \)

Flow Rate, cfs = (Area, sq ft) (Velocity, ft/sec) or Q = AV where: Q = flow rate, A = area, V = velocity

Food/Microorganism Ratio = \(\frac{\text{BOD}_5, \text{lbs/day}}{\text{MLVSS, lbs}} \)

Force, pounds = (Pressure, psi) (Area, sq in)

Gallons/Capita/Day = \(\frac{\text{Volume of Wastewater Produced, gpd}}{\text{Population}} \)

Hardness, as mg CaCO_3/L = \(\frac{(\text{Titrant Volume, mL})(1,000)}{\text{Sample Volume, mL}} \) Only when the titration factor is 1.00 of EDTA

Horsepower, Brake (bhp) = \(\frac{(\text{Flow, gpm})(\text{Head, ft})}{(3,960)(\text{Decimal Pump Efficiency})} \)

Horsepower, Motor (mhp) = \(\frac{(\text{Flow, gpm})(\text{Head, ft})}{(3,960)(\text{Decimal Motor Efficiency})(\text{Decimal Motor Efficiency})} \)

Horsepower, Water (whp) = \(\frac{(\text{Flow, gpm})(\text{Head, ft})}{3,960} \)

Hydraulic Loading Rate, gpd/sq ft = \(\frac{\text{Total Flow Applied, gpd}}{\text{Area, sq ft}} \)

Leakage, gpd = \(\frac{\text{Volume, gallons}}{\text{Time, days}} \)

Mass, lbs = (Volume, MG) (Concentration, mg/L) (8.34 lbs/gal)

Mass Flux, lbs/day = (Flow, MGD) (Concentration, mg/L) (8.34 lbs/gal)

Mean Cell Residence Time (MCRT) or Solids Retention Time (SRT), days = \(\frac{\text{Aeration Tank TSS, lbs} + \text{Clarifier TSS, lbs}}{\text{TSS Wasted, lbs/day} + \text{Effluent TSS, lb/day}} \)

Molarity = \(\frac{\text{Moles of Solute}}{\text{Liters of Solution}} \)

Effective February 10, 2009
Normality = \frac{\text{Number of Equivalent Weights of Solute}}{\text{Liters of Solution}}

Number of Equivalent Weights = \frac{\text{Total Weight}}{\text{Equivalent Weight}}

Number of Moles = \frac{\text{Total Weight}}{\text{Molecular Weight}}

Organic Loading Rate = \frac{\text{Organic Load, lbs BOD}_5/\text{day}}{\text{Volume}}

Organic Loading Rate-RBC, lbs BOD/day/1,000 sq ft = \frac{\text{Organic Load, lbs BOD}_5/\text{day}}{\text{Surface Area of Media, 1,000 sq ft}}

Organic Loading Rate-Trickling Filter, lbs BOD/day/1,000 cu ft = \frac{\text{Organic Load, lbs BOD}_5/\text{day}}{\text{Volume, 1,000 cu ft}}

Oxygen Uptake Rate/Oxygen Consumption Rate, mg/L/minute = \frac{\text{Oxygen Usage, mg/L}}{\text{Time, minute}}

Population Equivalent, Organic = \frac{(\text{Flow, MGD})(\text{BOD}_5, \text{mg/L})(8.34 \text{ lbs/gal})}{\text{lbs BOD/day/person}}

Recirculation Ratio-Trickling Filter = \frac{\text{Recirculated Flow}}{\text{Primary Effluent Flow}}

Reduction in Flow, % = \frac{(\text{Original Flow} - \text{Reduced Flow}) (100\%)}{\text{Original Flow}}

Reduction of Volatile Solids, % = \frac{\text{In - Out}(100\%)}{\text{In} - (\text{In} \times \text{Out})} \text{ All information (In and Out) must be in decimal form}

Removal, % = \frac{(\text{In} - \text{Out}) (100\%)}{\text{In}}

Return Rate, % = \frac{(\text{Return Flow Rate}) (100\%)}{\text{Influent Flow Rate}}

Return Sludge Rate-Solids Balance = \frac{(\text{MLSS})(\text{Flow Rate})}{\text{Return Activated Sludge Suspended Solids - MLSS}}

Slope, % = \frac{\text{Drop or Rise}}{\text{Distance}} \times 100

Sludge Density Index = \frac{100}{\text{SVI}}

Effective February 10, 2009
Sludge Volume Index, mL/g = \(\frac{(SSV_{30}, \text{mL/L}) \times (1,000 \text{ mg/g})}{\text{MLSS, mg/L}} \)

Solids, mg/L = \(\frac{(\text{Dry Solids, grams}) \times (1,000,000)}{\text{Sample Volume, mL}} \)

Solids Concentration, mg/L = \(\frac{\text{Weight, mg}}{\text{Volume, L}} \)

Solids Loading Rate, lbs/day/sq ft = \(\frac{\text{Solids Applied, lbs/day}}{\text{Surface Area, sq ft}} \)

Solids Retention Time (SRT): see Mean Cell Residence Time (MCRT)

Specific Gravity = \(\frac{\text{Specific Weight of Substance, lbs/gal}}{\text{Specific Weight of Water, lbs/gal}} \)

Specific Oxygen Uptake Rate/Respiration Rate, (mg/g)/hr = \(\frac{\text{OUR, mg/L/min (60 min)}}{\text{MLVSS, g/L (1 hr)}} \)

Surface Loading Rate or Surface Overflow Rate, gpd/sq ft = \(\frac{\text{Flow, gpd}}{\text{Area, sq ft}} \)

Three Normal Equation = \((N_1 \times V_1) + (N_2 \times V_2) = (N_3 \times V_3)\), where \(V_1 + V_2 = V_3 \)

Two Normal Equation = \(N_1 \times V_1 = N_2 \times V_2\), where \(N = \text{concentration (normality)}, V = \text{volume or flow} \)

Velocity, ft/second = \(\frac{\text{Flow Rate, cu ft/sec}}{\text{Area, sq ft}} \) or \(\frac{\text{Distance, ft}}{\text{Time, second}} \)

Volatile Solids, % = \(\frac{(\text{Dry Solids, g} - \text{Fixed Solids, g}) \times (100)}{\text{Dry Solids, g}} \)

Volume of Cone = \(\frac{1}{3} \times (0.785) \times (\text{Diameter}^2) \times (\text{Height}) \)

Volume of Cylinder = \(0.785 \times (\text{Diameter}^2) \times (\text{Height}) \)

Volume of Rectangular Tank = \((\text{Length}) \times (\text{Width}) \times (\text{Height}) \)

Waste Milliequivalent = \((\text{mL}) \times (\text{Normality}) \)

Watts (DC circuit) = \((\text{Volts}) \times (\text{Amps}) \)

Watts (AC circuit) = \((\text{Volts}) \times (\text{Amps}) \times (\text{Power Factor}) \)

Weir Overflow Rate, gpd/ft = \(\frac{\text{Flow, gpd}}{\text{Weir Length, ft}} \)

Wire-to-Water Efficiency, % = \(\frac{\text{Water Horsepower, HP}}{\text{Power Input, HP or Motor HP}} \times 100 \)

Wire-to-Water Efficiency, % = \(\frac{\text{Flow, gpm} \times (\text{Total Dynamic Head, ft}) \times (0.746 \text{ kw/HP}) \times (100)}{(3,960) \times (\text{Electrical Demand, kilowatts})} \)

Effective February 10, 2009
Conversion Factors:
1 acre = 43,560 square feet
1 acre foot = 326,000 gallons
1 cubic foot = 62.4 pounds
1 cubic foot = 7.48 gallons
1 cubic foot per second = 0.646 MGD
1 foot = 0.305 meters
1 foot of water = 0.433 psi
1 gallon = 3.79 liters
1 gallon = 8.34 pounds
1 grain per gallon = 17.1 mg/L
1 horsepower = 0.746 kW or 746 watts or 33,000 ft. lbs./min.
1 million gallons per day = 694 gallons per minute
1 million gallons per day = 1.55 cubic feet per second
1 mile = 5,280 feet
1 pound = 0.454 kilograms
1 pound per square inch = 2.31 feet of water
1 ton = 2,000 pounds
1% = 10,000 mg/L
π or pi = 3.14

Population Equivalent, hydraulic = 100 gallons/person/day
Population Equivalent = 0.17 lbs BOD/person/day

Abbreviations:
BOD biochemical oxygen demand
CBOD carbonaceous biochemical oxygen demand
cfs cubic feet per second
COD chemical oxygen demand
DO dissolved oxygen
ft feet
F/M ratio food to microorganism ratio
g grams
gpd gallons per day
gpg grains per gallon
gpm gallons per minute
in inches
kW kilowatt
lbs pounds
mg/L milligrams per liter
MCRT mean cell residence time
MGD million gallons per day
mL milliliter
MLSS mixed liquor suspended solids
MLVSS mixed liquor volatile suspended solid
OCR oxygen consumption rate
ORP oxygen reduction potential
OUR oxygen uptake rate
ppb parts per billion
ppm parts per million
psi pounds per square inch
PE population equivalent
Q flow
RAS return activated sludge
RBC rotating biological contactor
SDI sludge density index
SRT solids retention time
SS settleable solids
SSV30 settled sludge volume 30 minute
SVI sludge volume index
TOC total organic carbon
TS total solids
TSS total suspended solids
VS volatile solids
WAS waste activated sludge

Effective February 10, 2009